Banach空间中一类分数阶微分方程边值问题Boundary value problem for a class of fractional differential equations in Banach spaces
董琪翔;毋光先;李姣;
摘要(Abstract):
研究Banach空间中一类非线性分数阶微分方程边值问题.构建此类方程的Green函数,利用非紧测度和相关的不动点定理,得到了此类方程的mild解存在的几个充分条件,所得结果改进和推广了一些已有的结论.
关键词(KeyWords): 分数阶积分;分数阶导数;微分方程;边值问题;mild解
基金项目(Foundation): 国家自然科学基金(10971182);; 江苏省自然科学基金(BK2009179,BK2010309);; 江苏省高校自然科学基金(09KJB110010)
作者(Authors): 董琪翔;毋光先;李姣;
参考文献(References):
- [1]Rashid M H M,Al-Omari A.Local and global existence of mild solutions for impulsive fractional semilinearintegro-differential equation[J].Commun.Nonlinear Sci.Nuner.Simulat.,2011,16:3493-3503.
- [2]Diethelm K.The Analysis of Fractional Differential Equations[M].Berlin:Springer,2010.
- [3]Kaufmann E R,Yao K D.Existence of solutions for a nonlinear fractional order differential equation[J].Electronic J.Diff.Quali.Theory Equati.,2009,71:1-9.
- [4]Bazhlekova E.Fractional Evolution Equations in Banach Space[D].Eindhoven:University Press FacilitiesEindhoven University of Technology,2001.
- [5]Lakshmikantham V,Vatsala A S.Basic theory of fractional differentional equation[J].Nonlinear Anal.,2008,69:2677-2682.
- [6]Zhang Shuqin.The existence of a positive solution for a nonlinear fractional differential equation[J].J.Math.Anal.Appl.,2000,252:804-812.
- [7]卢芳,周宗福.一类分数阶微分方程边值问题正解的存在性[J].纯粹数学与应用数学,2011,27(5):672-678.
- [8]郭大钧.非线性分析中的半序方法[M].济南:山东科学技术出版社,2000.
- [9]Dong Qixiang,Li Gang.Existence of solutions for semilinear differential equations with nonlocal conditionsin Banach space[J].Electronic J.Quali.Theory Diff.Equati.,2009,47:1-13.
- [10]Dong Qixiang,Fan Zhenbin,Li Gang.Existence of solutions to nonlocal functional differential integrodif-ferential equations[J].Int.J.Nonlinear.Sci.,2008,5(2):140-151.
- [11]Banas J,Goebel K.Measure of Noncompactness in Banach Spaces[M].New York:Marcel Dekker Inc.,1969.