矩阵值函数空间中尺度空间的稠密性The density of the space of matrix-valued scaling function
崔丽鸿;陈晓东;杜俊峰;王隆玉;郭兴宝;崔月娥;
摘要(Abstract):
多分辨分析的概念在小波基构造中起着非常重要的作用,并经历了从经典多分辨分析到多重多分辨分析,再到矩阵值多分辨分析的研究历程.本文基于矩阵值多分辨分析,研究并给出了矩阵值函数空间中尺度空间稠密性的两个充要条件,并在此基础之上得到了稠密性的两个充分条件.
关键词(KeyWords): 矩阵值多分辨分析;矩阵值函数空间;尺度空间;稠密性
基金项目(Foundation): 大学生创新性实验计划(101001027)
作者(Authors): 崔丽鸿;陈晓东;杜俊峰;王隆玉;郭兴宝;崔月娥;
参考文献(References):
- [1]Morlet J.Wave propagation and sampling theory and complex waves[J].Geophysics,1982,47(2):222-236.
- [2]Mallat S.Multiresolution approximations and wavelet orthonormal bases of L2(R)[J].Trans.Amer.Math.Soc.,1989,315(1):69-87.
- [3]Daubechies I.Ten Lectures on Wavelets[M].Philadelphia:SIAM,1992.
- [4]Ron A,Shen Z.Affine systems in L2(Rd):The analysis of the analysis operator[J].Journal of FunctionalAnalysis,1997,148(1):408-447.
- [5]Xia X,Suter B.Orthonormal matrix vector-valued wavelets and matrix karhunen-loeve expansion[J].Con-temporary Mathematics,1998,216(1):159-175.
- [6]Cui L,Zhai B.Existence and design of biorthogonal matrix-valued wavelets[J].Nonlinear Analysis Series B:Real World Applications,2009,10(5):2679-2687.
- [7]Cui L,Zhang T.M-Band orthogonal vector-valued multiwavelets for vector-valued signals[J].Journal ofApplied Mathematics and Computing,2008,28(1/2):165-184.
- [8]陈清江,陈瑛.向量值双正交矩阵值小波的存在性及滤波器的构造[J].纯粹数学与应用数学,2008,24(1):10-16.
- [9]Boor C,Devore R,Ron A.Approximation from shift-invariant space of L2(Rd)[J].Transactions of theAmerican Mathematical Society,1994,341(2):787-806.
- [10]Dong B,Shen Z.MRA-based Wavelet Frames and Applications[M].Salt Lake City:Park City MathematicsInstitute,2010.