具有逐项分数阶导数的微分方程边值问题解的存在性Existence of solutions for boundary value problem of fractional differential equations involving sequential fractional derivative
李燕;刘锡平;李晓晨;张莎;
摘要(Abstract):
研究了一类具有逐项分数阶导数的微分方程边值问题.对参数的各种取值情况进行了全面的分析,运用Banach压缩映射原理和Schauder不动点定理,得到并证明了边值问题解的存在性定理.最后,给出了两个例子来证明结论有效.
关键词(KeyWords): 分数阶微分方程;逐项分数阶导数;边值问题;Banach压缩映射原理;Schauder不动点定理
基金项目(Foundation): 国家自然科学基金(11171220);; 沪江基金(B14005)
作者(Authors): 李燕;刘锡平;李晓晨;张莎;
参考文献(References):
- [1]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier B.V,2006.
- [2]白占兵.分数阶微分方程边值问题理论及应用[M].北京:陕科学技术出版社,2012.
- [3]王晓,刘锡平,邓雪静.一类分数阶奇异微分方程积分边值问题正解的存在性[J].纯粹数学与应用数学,2015,31(5):509-517.
- [4]张立新,王海菊.含积分边界条件的分数阶微分方程边值问题的正解的存在性[J].纯粹数学与应用数学,2013,29(05):450-457.
- [5]Liu Xiping,Jia Mei.Multiple solutions for fractional differential equations with nonlinear boundary conditions[J].Computers Mathematics with Applications,2010,59(8):2880-2886.
- [6]刘帅,贾梅,秦小娜.带积分边值条件的分数阶微分方程解的存在性和唯一性[J].上海理工大学学报,2014,36(5):409-415.
- [7]金京福,刘锡平,窦丽霞.分数阶积分微分方程边值问题正解的存在性[J].上海理工大学学报,2011,49(5):824-828.
- [8]邓雪静,刘锡平,王晓.具分数微分算子的分数阶微分方程边值问题正解的存在性[J].吉林大学学报,2015,53(05):857-862.
- [9]Chai Guoqing.Existence results for boundary value problems of nonlinear fractional differential equations[J].Computers and Mathematics with Applications,2011,62(5):2374-2382.
- [10]Bashir Ahmad,Juan J,Nieto.Sequential fractional differential equations with three-point boundary conditions[J].Computers and Mathematics with Applications,2012,64(10):3046-3052.
- [11]Ahmed Alsaedi,Sotiris K Ntouyas,Ravi P Agarwal,etal.On caputo type sequential fractional dfferential equations with nonlocal integral boundary conditions[J].Advances in Difference Equations,2015,2015(1):1-12.