局部凸空间中的不动点定理及其应用Fixed point theorems in locally convex spaces and its applications
史红波;朱江;
摘要(Abstract):
讨论了局部凸空间中推广的Leray-Schauder度的基本性质,建立了一些新的不动点定理,并给出了对局部凸空间Cauchy初值问题的应用.这些定理是Banach空间中相应结果的推广.
关键词(KeyWords): 局部凸空间;Leray-Schauder度;不动点定理;Cauchy初值问题
基金项目(Foundation): 国家自然科学基金(10801065)
作者(Authors): 史红波;朱江;
参考文献(References):
- [1]贺飞,刘德,罗成.局部凸空间中的Drop定理和Phelps引理以及Ekeland变分原理[J].数学学报,2006,49(5):1145-1152.
- [2]He Fei,Liu De,Luo Cheng.Generalizations of Drop theorem,Phelps’lemma and Ekeland’s principle inlocally convex spaces[J].数学进展,2007,36(5):593-598.
- [3]Qiu Jinghui.Local completeness,Drop theorem and Ekeland’s variational principle[J].J.Math.Anal.Appl.,2005,311:23-39.
- [4]O’Regan D.Some fixed point theorems for concentrative mappings between locally convex linear topologicalspaces[J].Nonl.Anal.,1996,27:1437-1446.
- [5]Agarwal R P,O’Regan D.Leray-Schauder and Krasnoselskii results for multivalued maps defined on pseudo-open subsets of a Fr′echet space[J].Appl.Math.Lett.,2006,19:1327-1334.
- [6]O’Regan D.Integral equations in reffexive Banach spaces and weak topoplogies[J].Proc.Amer.Math.Soc.,1996,124:607-614.
- [7]O’Regan D.Fixed points for set-valued mappings in locally convex linear topological spaces[J].Math.Com-put.Modelling,1998,28:1437-1446.
- [8]O’Regan D,Agarwal R P.Fixed point theory for admissible multimaps defined on closed subsets of Fr′echetspaces[J].J.Math.Anal.Appl.,2003,277:438-445.
- [9]Cammaroto F,Chinni A,Sturiale G.A remark on Ekeland’s principle in locally convex topological vectorspaces[J].Math.Comput.Modelling,1999,30:75-79.
- [10]Polewczak J.Ordinary differential equations on closed subsets of locally convex space with applications tofixed point theorems[J].J.Math.Anal.Appl.,1990,151:208-225.
- [11]Liang Jin,Xiao Tijun,Abstract degenerate Cauchy problems in locally convex spaces[J].J.Math.Anal.Appl.,2001,259:398-412.
- [12]Yuasa T.Differential equations in a locally convex space via the measure of nonprecompactness[J].J.Math.Anal.Appl.,1981,86:534-554.
- [13]Reich S.A fixed point theorem for Fre′chet spaces[J].J.Math.Anal.Appl.,1980,78:33-35.
- [14]魏雷,朱江.二阶微分包含的边值问题及其应用[J].纯粹数学与应用数学,2007,23(1):75-82.
- [15]Deimling K.Nonlinear Functional Analysis[M].Berlin:Springer-Verlag,1988.
- [16]郭大钧.非线性泛函分析[M].济南:山东科学技术出版社,2001.
- [17]钟承奎,范先令,陈文源.非线性泛函分析引论[M].兰州:兰州大学出版社,1998.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享