k-有界sober空间的收缩与Smyth幂空间Retracts and Smyth power spaces of k-bounded sober spaces
杨毅;鲍猛;徐晓泉;
摘要(Abstract):
主要讨论k-有界sober空间对遗传、收缩、函数空间和Smyth幂构造的封闭性,证明了k-有界sober空间是饱和遗传的,但不是闭遗传的;对收缩与Smyth幂构造均不具有封闭性.还证明了存在k-有界sober空间X使得函数空间[X→X]赋予点式收敛拓扑不是k-有界sober空间.
关键词(KeyWords): k-有界sober空间;遗传性;收缩;函数空间;Smyth幂空间
基金项目(Foundation): 国家自然科学基金(12071199,11661057);; 江西省自然科学基金(20192ACBL20045)
作者(Authors): 杨毅;鲍猛;徐晓泉;
参考文献(References):
- [1] Thron W. Lattice-equivalence of topological spaces[J]. Duke Math. J., 1962,29(4):671-679.
- [2] Gierz G, Hofmann K, Keimel K, et al. Continuous Lattices and Domains[M]. Cambridge:Cambridge University Press, 2003.
- [3] Goubault J. Non-Hausdorff Topology and Domain Theory[M]. Cambridge:Cambridge University Press, 2013.
- [4] Hoffmann R E. On the sobrification remainder XS-X[J]. Pac. J. Math., 1979,83(1):145-156.
- [5] Hoffmann R E. Sobrification of partially ordered sets[J]. Semigroup Forum, 1979,17(1):123-138.
- [6] Schalk A. Algebras for Generalized Power Constructions[M]. Germany:Technische Hochschule Darmstadt, 1993.
- [7] Heckmann R, Keimel K. Quasicontinuous domains and the Smyth powerdomain[J]. Electron. Notes Theor. Comput. Sci., 2013,298(1):215-232.
- [8] Wen X P, Xu X Q. On some kinds of weakly sober spaces[J]. Topol. Appl., 2020,272(1):1-10.
- [9] Ern′e M. Categories of locally hypercompact spaces and quasicontinuous posets[J]. Appl. Categ.Struct., 2018,26(5):823-854.
- [10] Xu X Q. On H-sober spaces and H-sobrifications of T0 spaces[J]. Topol. Appl., 2021,289(1):1-37.
- [11] Xu X Q, Shen C, Xi X Y, et al. On T0 spaces determined by well-filtered spaces[J]. Topol. Appl.,2020,282(1):1-34.
- [12] Johnstone P. Scott is not always sober[J]. Lecture Notes in Math., 1981,871(1):282-283.
- [13] Ern′e M. The strength of prime ideal separation, sobriety and compactness properties[J]. Topol.Appl., 2018,241(1):263-290.
- [14] Gierz G, Lawson J D, Stralka A. Quasicontinuous posets[J]. Houst. J. Math., 1983,9(2):191-208.
- [15] Isbell J. Completion of a construction of Johnstone[J]. Proc. Am. Math. Soc., 1982,85(3):333-334.
- [16] Jia X D. Meet-Continuity and Locally Compact Sober Dcpos[M]. Birmingham:University of Birmingham, 2018.
- [17] Kou H. Uk-admitting Dcpo′s Need Not Be Sober[M]. Netherland:Springer, 2001.
- [18] Lawson J, Wu G H, Xi X Y. Well-filtered spaces, compactness, and the lower topology[J]. Houst.J. Math., 2020,46(1):283-294.
- [19] Shen C, Wu G H, Xi X Y, et al. Sober Scott spaces are not always co-sober[J]. Topol. Appl.,2019,282(1):1-12.
- [20] Wen X P, Xu X Q. Sober is not always co-sober[J]. Topol. Appl., 2018,250(1):48-52.
- [21] Xu X Q, Shen C, Xi X Y, et al. First countability,ω-well-filtered spaces and reflections[J]. Topol.Appl., 2020,279(1):1-20.
- [22] Xu X Q, Xi X Y, Zhao D S. A complete Heyting algebra whose Scott topology is not sober[J].Fundam. Math., 2021,252(3):315-323.
- [23] Hochster M. Prime ideal structure in commutative rings[J]. Trans. Amer. Math. Soc., 1969,142(1):43-60.
- [24] Drake D, Thron W. On the representation of of an abstract lattice as the family of closed sets of a topological space[J]. Trans. Amer. Math. Soc., 1965,120(1):57-71.
- [25] Zhao D S, Ho W. On topologies defined by irreducible sets[J]. J. Log. Algebraic Methods Program.,2015,84(1):185-195.
- [26] Miao H, Li Q G, Zhao D S. On two problems about sobriety of topological spaces[J]. Topol.Appl., 2021,295(1):1-10.
- [27] Zhao B, Lu J, Wang K. The answer to a problem posed by Zhao and Ho[J]. Acta Math. Sin.(Engl. Ser.), 2019,35(3):438-444.
- [28] Tang Y, Yang J. Properties of hypersober spaces and k-bounded sober spaces[J]. Appl. Math.Jour. Chinese University(A), 2020,35(3):367-373.
- [29] Zhao D S, Fan T. Dcpo-completion of posets[J]. Theor. Comp. Sci., 2010,411(22):2167-2173.
- [30] Engelking R. General Topology[M]. Warzawa:Polish Scientific Publishers, 1989.
- [31] Heckmann R. An Upper Power Domain Construction in Terms of Strongly Compact Sets[M].New York:Lecture Notes in Computer Science, 1992.
- [32] Lu C, Li Q G. Weak well-filtered spaces and coherence[J]. Topol. Appl., 2017,230(1):373-380.