局部对称空间中具有常数量曲率的超曲面Hypersurfaces with constant scalar curvature in locally symmetric spaces
华义平;宋卫东;
摘要(Abstract):
利用自伴算子研究局部对称空间中具有常数量曲率的紧致超曲面,得到了这类超曲面中的某些刚性定理,推广了已有的结果.
关键词(KeyWords): 局部对称;超曲面;自伴算子;数量曲率;全脐
基金项目(Foundation): 安徽省教育厅自然科学基金(KJ2008A05zC)
作者(Authors): 华义平;宋卫东;
参考文献(References):
- [1]袁斌贤.球面上具有常数量曲率的超曲面[J].中国科学技术大学学报,1998,28(6):696-700.
- [2]马金生.关于局部对称空间中具有常数量曲率超曲面[J].安徽大学学报,2002,26(1):12-18.
- [3]洪涛清.局部对称空间中具有常数量曲率的紧致超曲面[J].杭州师范大学学报,2008,7(3):168-171.
- [4]Okumura M.Hypersurfaces and a pinching problem on the second fundamental tensor[J].Amer.J.Math.,1974,96:207-213.
- [5]Cheng S Y,Yau S T.Hypersurfaces with constant scalar curvature[J].Math.Ann.,1977,225:195-204.
- [6]Chern S S,do Carmo M,Kobayashi S.Minimal submanifolds of a sphere with second fundamental form of constant length[J].Funcational Analysis and Related Fields,1975:59-75.
- [7]Xu Hongwei.A rigidity theorem for submanifolds with parallal mean curvature in a sphere[J].Arch Math.,1993,61:489-496.
- [8]Ding Shunhan,Zhang Jianfeng.Hypersurfaces in a locally symmetric manifold with constant mean curvature[J].Pure and Applied Mathematics,2006,22(1):94-98.