半群作用Li-Yorke对的存在性On Li-Yorke pairs of semigroup actions
苏郇立;
摘要(Abstract):
设X为紧度量空间,T为半群,本文研究了动力系统(X,T)上Li-Yorke对的存在性问题,证明了当(X,T)拓扑可迁且包含周期点时,在(X,T)上存在无限scrambled集.另外,列举了一些不包含Li-Yorke对的动力系统.
关键词(KeyWords): Li-Yorke对;邻近;渐近;scrambled集
基金项目(Foundation): 江苏省高校自然科学基金(08KJD110016)
作者(Authors): 苏郇立;
参考文献(References):
- [1]Li Tianyan,Yorke J.Period three implies Chaos[J].Amer.Math.Monthly,1975,82:985-992.
- [2]廖公夫,汪威,范钦杰.一类非本原代换与混沌[J].数学年刊:A辑,2009,30(2):183-188.
- [3]Cairns G,Davis G,Elton D,et al.Chaotic group actions[J].L’Ens.Math.,1995,41:123-133.
- [4]Devaney R.An Introduction to Chaotic Dynamaical Systems[M].New York:Addison-Wesley,1989.
- [5]Naolekar A,Sankaran P.Chaotic group actions on manifolds[J].Topology Appl.,2000,107:233-243.
- [6]Blanchard F,Durand F,Maass A.Constant-length substitutions and countable scrambled sets[J].Nonlinearity.,2004,17:817-833.
- [7]Huang Wen,Ye Xiongdong.Devaney’s chaos or2-scattering implies Li-Yorke’s chaos[J].Topology Appl.,2002,117:259-272.
- [8]David,Ellis B,Ellis R,Kolganova A,et al.The Topological dynamics of semigroup actions[J].Tran.Amer.Math.Soc.,2000,353(4):1279-1320.
- [9]Auslander J.Minimal Flows and Their Extensions[M].Amsterdam:North-Holland Math.Stud.,1988.