由两个多项式确定的代数簇上的有理点Rational points of algebraic variety defined by two polynomials
高伟;黄华;曹炜;
摘要(Abstract):
设F_q是q元有限域.本文研究了由F_q上两个特殊多项式确定的代数簇W上的有理点.当W的增广次数矩阵的最大不变因子与q-1互素时,得到了代数簇W上F_q-有理点个数的具体表达式,从而推广了已知的结论.
关键词(KeyWords): 有限域;代数簇;有理点;次数矩阵
基金项目(Foundation): 国家自然科学基金(11871291)
作者(Authors): 高伟;黄华;曹炜;
参考文献(References):
- [1] Cao W. Smith normal form of augmented degree matrix and its applications[J]. Linear Algebra Appl., 2009,431:1778-1784.
- [2] Hu S N, Hong S F, Zhao W. The number of rational points of a family of hypersurfaces over finite fields[J]. J. Number Theory, 2015,156:135-153.
- [3] Huang H, Gao W, Cao W. Remarks on the number of rational points on a class of hypersurfaces over finite fields[J]. Algebra Colloq., 2018,3:533-540.
- [4] Huang H, Han S M, Cao W. Normal bases and irreducible polynomials[J]. Finite Fields Appl.,2018,50:272-278.
- [5] Pan X L, Zhao X R, Cao W. A problem of Carlitz and its generalizations[J]. Arch. Math., 2014,102:337-343.
- [6] Wang R Y, Wen B B, Cao W. Degree matrices and enumeration of rational points of some hypersurfaces over finite fields[J]. J. Number Theory, 2017,177:91-99.
- [7] Zan H X, Cao W. Powers of polynomials and bounds of value sets[J]. J. Number Theory, 2014,143:286-292.
- [8] Zhu M L, Cao W. Invariant factors of degree matrices and L-functions of certain exponential sums[J].Finite Fields Appl., 2014,28:188-198.