一类具有保护区域的Leslie-Gower捕食-食饵模型的分歧分析Bifurcation analysis in a class of Leslie-Gower predator-prey model with a protection zone
姜启芳;崔仁浩;刘萍;
摘要(Abstract):
研究了一类Neumann边界条件下带有保护区域的Leslie-Gower捕食-食饵模型,分析稳态系统从半平凡解处发生分歧的条件,得到了分歧方向及分歧值的唯一性,得到了在确定参数范围内,从半平凡解出发的分支解曲线的稳定性.
关键词(KeyWords): 保护区域;捕食-食饵模型;分歧;唯一性;稳定性
基金项目(Foundation): 国家自然科学基金(11401144);; 黑龙江省留学归国人员科学基金(LC2013C01)
作者(Authors): 姜启芳;崔仁浩;刘萍;
参考文献(References):
- [1]Lotka A J.Analytical note on certain rhythmic relations in organic systems[J].Proc.Natl.Acad.Sci.,1920,6:410-415.
- [2]Volterra V.Fluctuations in the abundance of species,considered mathematically[J].Nature,1926,118:558-560.
- [3]Solomon M E.The natural control of animal populations[J].J.Anim.Ecol.,1949,18:1-35.
- [4]Holling C S.Some characteristics of simple types of predation and parasitism[J].Canadian Entomologist,1959,91:385-398.
- [5]Cui R H,Shi J P,Wu B Y.Strong Allee effect in a diffusive predator-prey system with a protection zone[J].J.Differential Equations,2014,256:108-129.
- [6]Yi F Q,Wei J J,Shi J P.Bifurcation analysis of a diffusive predator-prey system with Holling type-II funcation response[J].J.Differential Equations,2009,246:1944-1977.
- [7]Zhou J,Shi J P.The existence,bifurcation and stability of positive stationary solutions of a diffusive LeslieGower predator-prey model with Holling-type II function responses[J].J.Math.Anal.Appl.,2013,405:618-630.
- [8]Crandall M G,Rabinowitz P H.Bifurcation from simple eigenvalues[J].J.Funct.Anal.,1971,8:321-340.
- [9]Crandall M G,Rabinowitz P H.Bifurcation,perturbation of simple eigenvalues and linearized stability[J].Aech.Rational Mech.Anal.,1973,52:161-180.
- [10]Kato T.Perturbation Theory for Linear Operators[M].New York:Springer,1996.