二次截面Nakayama代数的McCoy性McCoy rings of quadratic truncated Nakayama algebras
周玉业;程智;
摘要(Abstract):
本文通过对不同形式矩阵环的研究,给出环R上一类矩阵环成为McCoy环的条件,并在此基础上得出二次截面Nakayama代数是McCoy环的充要条件.
关键词(KeyWords): McCoy环;多项式环;二次截面Nakayama代数
基金项目(Foundation): 安徽省高校自然科学重点基金(KJ2018A0304);; 安徽师范大学博士启动基金和项目培育基金(2014xmpy11)
作者(Authors): 周玉业;程智;
参考文献(References):
- [1] McCoy N H. Remarks on divisors of zero[J]. Amer. Math., 1942,49(5):286-295.
- [2] Nielsen P P. Semi-commutativity and the McCoy condition[J]. J. Algebra, 2006,298(1):134-141.
- [3] Rege M B, Chhawchharia S. Armendariz rings[J]. Proc. Japan Acad.(Ser. A), 1997,73(1):14-17.
- [4] Lei Zhen, Chen Jianlong, Ying Zhiling. A question on McCoy rings[J]. Bull. Austral. Math. Soc.,2007,76(1):137-141.
- [5] Camillo V, Nielsen P P. McCoy rings and zero-divisors[J]. J. Pure. Appl. Algebra, 2008,212(3):599-615.
- [6] Kosoan M T. Extensions of rings having McCoy condition[J]. Canad. Math. Bull., 2009,52(2):267-272.
- [7] Ying Zhiling, Chen Jianlong, Lei Zhen. Extensions of McCoy rings[J].东北数学, 2008,24(1):85-94.
- [8] Zhao Renyu, Liu Zhongqui. Extensions of McCoy rings[J]. Algebra Coll., 2009,16(3):495-502.
- [9] Ringel C. M. The Gorenstein projective modules for the Nakayama algebras I[J]. J. Algebra,2013,385:241-161.
- [10] Shen Dawei. A note on homological properties of Nakayama algebras[J]. Archiv. der. Mathematik, 2017,108(3):251-261.
- [11] Assem I, Simson D, Skowro′nski A. Elements of the Representation Theory of Associative Algebras[M], London:Cambridge University Press, 2006.