关于双参数广义三角函数与双曲函数的不等式Some inequalities for the generalized trigonometric and hyperbolic functions with two parameters
尹枥,黄利国
摘要(Abstract):
利用经典的Bernoulli不等式,通过初等解析方法与不等式理论建立了带双参数广义三角函数与双曲函数的Gr¨unbaum型不等式;另外,还得到了推广超几何级数3F2的两个双边不等式.
关键词(KeyWords): 不等式;广义三角函数与双曲函数;推广超几何级数
基金项目(Foundation): 国家自然科学基金(11401041);; 滨州学院科研基金(BZXYL1303,2013Y02)
作者(Author): 尹枥,黄利国
参考文献(References):
- [1]Linqvist P.Some remarkable sine and cosine functions[J].Ricerche di Matematica,1995,44:269-290.
- [2]Biezuner R J,Ercole G,Martins E M.Computing the sinp function via the inverse power method[J].Comput.Methods Appl.Math.,2012,(2):129-140.
- [3]Takeuchi S.Generalized Jacobian elliptic functions and their application to bifurcation problems associated with p-Laplacian[J].J.Math.Anal.Appl.,2012,385:24-35.
- [4]Bhayo B A,Vuorinen M.On generalized trigonometric functions with two parameters[J].J.Approx.Theory,2012,164(10):1415-1426.
- [5]Jiang W D,Wang M K,Chu Y M,et al.Convexity of the generalized sine function and the generalized hyperbolic sine function[J].J.Approx.Theory,2013,174:1-9.
- [6]BariczA,Bhayo B A,Klen R.Convexity properties of generalized trigonometric and hyperbolic functions[J].Aequat.Math.,2015,89(3):473-484.
- [7]BariczA,Bhayo B A,Pogany T K.Functional inequalities for generalized inverse trigonometric and hyperbolic functions[J].J.Math.Anal.Appl.,2014,417:244-259.
- [8]Edmunds D E,Gurka P,Lang J.Properties of generalized trigonometric functions[J].J.Approx.Theory,2012,164:47-56.
- [9]王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2000.
- [10]Maier R S.P-symbol,Heun identities,and 3F2 identities[J].Contemp.Math.,2008,471:139-159.
- [11]Lavoie J L,Grondin F,Rathie A K.Generalizations of wastons theorems on the sum of a 3F2[J].Indian J.Math.,1992,32(1):23-32.
- [12]Lavoie J L,Grondin F,Rathie A K.Generalizations of whipples theorems on the sum of a 3F2[J].Math.Comp.,1994,205(62):267-276.
- [13]Karp D.Representations and inequalities for generalized hypergeometric functions[J].J.Math.Anal.Appl.,2014,421(1):370-382.
- [14]Bhayo B A,Vuorinen M.Power mean inequality of generalized trigonometric functions[J].Matematicki Vesnik,2015,67(1):17-25.
- [15]Bhayo B A,Yin L.Logarithmic mean inequality for generalized trigonometric and hyperbolic functions[J].Acta.Univ.Sapientiae Math.,2014,6(2):135-145.