一维可压缩等熵Navier-Stokes方程稀疏波在流近似下的零耗散极限Flux approximation to the zero dissipation limit to rarefaction wave for 1-D compressible isentropic Navier-Stokes equations
王金妮;刘进静;
摘要(Abstract):
主要研究一维可压缩等熵Navier-Stokes方程稀疏波在流近似下的零耗散极限问题.若对应的Euler方程的稀疏波解的一端与真空连接,本文采用流近似方法控制稀疏波中由真空引起的退化,并构造此可压缩等熵Navier-Stokes方程的一列解,进而运用基本能量方法证明随着黏性的消失,此列解收敛于Euler方程的稀疏波解,且得到一致收敛率.
关键词(KeyWords): 零耗散极限;可压缩Navier-Stokes方程;稀疏波;真空;流近似
基金项目(Foundation): 国家自然科学基金(11801444)
作者(Authors): 王金妮;刘进静;
参考文献(References):
- [1] Liu T P, Smoller J. On the vacuum state for the isentropic gas dynamics equations[J]. Adv. Appl.Math., 1980,1(4):345-359.
- [2] Smoller J. Shock Waves and Reaction-diffusion Equations[M]. New York:Springer-Verlag, 1994.
- [3] Hoff D, Liu T P. The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data[J]. Indiana Univ. Math. J., 1989,38(4):861-915.
- [4] Xin Z P. Zero dissipation limit to rarefaction waves for the one-dimensional Navier-Stokes equations of compressible isentropic gases[J]. Comm. Pure Appl. Math., 1993,46(5):621-665.
- [5] Chen G Q, Perepelitsa M. Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow[J]. Comm. Pure Appl. Math., 2010,63(11):1469-1504.
- [6] Huang F M, Wang Y, Wang Y, et al. Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks[J]. Sci. China Math., 2015,58(4):653-672.
- [7] Zhang Y H, Pan R H, Tan Z. Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1-D compressible isentropic Navier-Stokes equations[J]. Sci. China Math.,2013,56(11):2205-2232.
- [8] Jiang S, Ni G X, Sun W J. Vanishing viscosity limit to rarefaction waves for the Navier-Stokes equations of one-dimensional compressible heat-conducting fluids[J]. SIAM J. Math. Anal., 2006,38(2):368-384.
- [9] Xin Z P, Zeng H H. Convergence to the rarefaction waves for the nonlinear Boltzmann equation and compressible Navier-Stokes equations[J]. J. Differ. Equ., 2010,249(4):827-871.
- [10] Wang Y. Zero dissipation limit of the compressible heat-conducting Navier-Stokes equations in the presence of the shock[J]. Acta Math. Sci. Ser. B., 2008,28(4):727-748.
- [11] Ma S X. Zero dissipation limit to strong contact discontinuity for the 1-D compressible NavierStokes equations[J]. J. Differ. Equ., 2010,248(1):95-110.
- [12] Huang F M, Wang Y, Yang T. Fluid dynamic limit to the Riemann solutions of Euler equations:I. Superposition of rarefaction waves and contact discontinuity[J]. Kinet. Relat. Models,2010,3(4):685-728.
- [13] Huang F M, Wang Y, Yang T. Vanishing viscosity limit of the compressible Navier-Stokes equations for solutions to Riemann problem[J]. Arch. Ration. Mech. Anal., 2012,203(2):379-413.
- [14] Goodman J, Xin Z P. Viscous limits for piecewise smooth solutions to systems of conservation laws[J]. Arch. Ration. Mech. Anal., 1992,121(3):235-265.
- [15] Yu S H. Zero dissipation limit of solutions with shocks for systems of hyperbolic conservation laws[J]. Arch. Ration. Mech. Anal., 1999,146(4):275-370.
- [16] Bianchini S, Bressan A. Vanishing viscosity solutions of nonlinear hyperbolic systems[J]. Ann. of Math., 2005,161(1):223-342.
- [17] Bressan A, Yang T. On the convergence rate of vanishing viscosity approximations[J]. Comm.Pure Appl. Math., 2004,57(8):1075-1109.
- [18] Bressan A, Huang F M, Wang Y, et al. On the convergence rate of vanishing viscosity approximations for nonlinear hyperbolic systems[J]. SIAM J. Math. Anal., 2012,44:3537-3563.
- [19] Huang F M, Li M J, Wang Y. Zero dissipation limit to rarefaction wave with vacuum for onedimensional compressible Navier-Stokes equations[J]. SIAM J. Math. Anal., 2012,44(3):1742-1759.
- [20] Jiu Q S, Wang Y, Xin Z P. Stability of rarefaction waves to the 1-D compressible Navier-Stokes equations with density-dependent viscosity[J]. Comm. Partial Differ. Equ., 2011,36(4):602-634.
- [21] Jiu Q S, Wang Y, Xin Z P. Vacuum behaviors around rarefaction waves to 1-D compressible Navier-Stokes equations with density-dependent viscosity[J]. SIAM J. Math. Anal., 2013,45:3194-3228.
- [22] Yang H C, Liu J J. Delta-shocks and vacuums in zero-pressure gas dynamics by the flux approximation[J]. Sci. China Math., 2015,58(11):2329-2346.
- [23] Yang H C, Liu J J. Concentration and cavitation to the Euler equations for nonisentropic fluids by the flux approximation[J]. Nonlinear Anal. TMA, 2015,3:123-177.
- [24] Matsumura A, Nishihara K. Asymptotics toward the rarefaction waves of the solutions of a onedimensional model system for compressible viscous gas[J]. Japan J. Indust. Appl. Math., 1986,3(1):1-13.