关于Schrder路径计数的几个递推式的组合证明The combinatorial proofs of several recurrences about the enumeration of Schrder paths
尹鹏君;
摘要(Abstract):
利用Schrder路径中不同类型的步的特点,研究不同初始高度的Schrder路径,给出了Schrder路径计数的递推公式的组合证明.
关键词(KeyWords): Schrder路径;小Schrder路径;初始高度
基金项目(Foundation): 国家自然科学基金(11601020;11501014);; 北京市委组织部优秀人才项目(2013D005003000012);; 2017商科特色项目(19005757053)
作者(Authors): 尹鹏君;
参考文献(References):
- [1]Schroder E.Vier combinatorische Probleme[J].Z.fur Math.Physic.,1870,15:361-376.
- [2]Shapiro L W,Sulanke R A.Bijections for the Schroder numbers[J].Mathematics Magazine,2000,73(5):369-376.
- [3]Deutsch E.A bijective proof of the equation linking the Schroder numbers,little and small[J].Discrete Math.,2001,241:235-240.
- [4]Huh J S,Park S K.Generalized small Schroder numbers[J/OL].Electronic J.Combin.,2015[2017-07].http://www.combinatorics.org.
- [5]Yan S H F.From(3,2)-Motzkin paths to Schroder paths[J/OL].J.Integer Sequences,2007[2017-07].http://www.emis.de/journals/JIS/vol10.html.
- [6]Song C W.The generized Schroder theory[J/OL].Electronic J.Combin.,2005[2017-07].http://www.combinatorics.org.
- [7]Chen Z J,Zhao S.Two bijections on weighted Motzkin paths[J].Communications In Mathematical Research,2017,33(2):149-159.
- [8]Shapiro L W,Wang C J.A bijection between 3-Motzkin paths and Schroder paths with no peak at odd height[J/OL].J.Integer Sequences,2009[2017.07].http://www.emis.de/journals/JIS/vol12.html.
- [9]Pergola E,Sulanke R A.Schroder triangles,paths,and parallelogram polyominoes[J].J.Integer Sequences,1998[2017-07].http://www.emis.de/journals/JIS/vol1.html.
- [10]Sloane N J A.The On-Line Encyclopedia of Integer Sequences[EB/OL].The OEIS Foundation Inc.,2014[2017-07].http://oeis.org.