幂等矩阵线性组合的可逆性Nonsigularity of linear combinations of idempotent matrices
张俊敏;成立花;李祚;
摘要(Abstract):
设T1,T2,T3是三个不同的两两相互可交换的n×n非零的三次幂等矩阵,并且c1,c2,c3是非零数.本文主要给出了线性组合c1T1+c2T2+c3T3可逆性的刻画.
关键词(KeyWords): 幂等矩阵;幂等矩阵的线性组合;可逆性
基金项目(Foundation): 国家自然科学基金资助项目(10571113);; 西安建筑科技大学基础研究基金资助项目(AJ12050)
作者(Authors): 张俊敏;成立花;李祚;
参考文献(References):
- [1]Song Guangtian,Guo Xuejun.Diagonability of idempotent matrices over moncommutive rings[J].Linear Algebra Appl.,1999,297:1-7.
- [2]Horn R A,Johnson C R.Matrices analysis[M].Cambridge:Cambrdge University Press,1991.
- [3]Halim o。zdemir,Ahmet Yasar o。zban.On idempotency of linear combinations of idempotent matrices[J].Applied Mathematics and Computation,2004,159:439-448.
- [4]Baksalary Oskar Maria.Idempotency of linear combinations of three idempotent matrices,two of which are disjoint[J].Linear Algebra Appl.,2004,388:67-78.
- [5]Baksalary Jerzy K,Baksalary Oskar Maria.Nonsingularity of linear combinations of idempotent matrices[J].Linear Algebra Appl.,2004,388:25-29.
- [6]Frob G Trenkler.Nonsinularity of the diffence of two oblique projectors[J].SIAM J.Matrix Anal.Appl.,1999,21:390-395.