带周期位势平面薛定谔-泊松方程组的结点解Nodal solutions for a class of planar Schrdinger-Poisson systems with periodic potential
郭文艳,章国庆,刘三阳
摘要(Abstract):
利用临界点理论中的亏格定理和Nehari流形技巧,本文证明了在二维全空间上一类带周期位势的薛定谔-泊松方程组高能量解的存在性,且该解存在无穷多个结点区域.更进一步,得到了其基态解的存在性且是不变号的.
关键词(KeyWords): 平面薛定谔-泊松方程组;周期位势;结点解
基金项目(Foundation): 上海市自然科学基金(15ZR1429500);; 沪江基金(B14005);; 上海理工大学培育基金(15HJPYMS03)
作者(Author): 郭文艳,章国庆,刘三阳
参考文献(References):
- [1]Lieb E H.Existence and uniqueness of the minimizing solution of Choquard’s nonlinear equation[J].Stud.Appl.Math.,1977,57:93-105.
- [2]Lions P L.Solutions of Hartree-Fock equations for Coulomb systems[J].Commun.Math.Phys.,1984,109:33-97.
- [3]Ambrosetti A.On Schrdinger-Poisson systems[J].Milan Journal of Mathematics,2008,76:257-274.
- [4]Mugnai D.The Schrdinger-Poisson system with positive potential[J].Commun.Partial Differ.Equ.,2013,36:1009-1117.
- [5]Choquard P,Stubbe J,Vuffray M.Stationary solutions of the Schrdinger-Newton model-an ODE approach[J].Differ.Integral Equ.,2008,21:665-679.
- [6]Cingolani S,Weth T.On the planar Schrdinger-Poisson system[J].Ann.I.H.Poincare-AN(2014).
- [7]Lieb E H.Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities[J].Ann.of Math.,1983,118:349-374.
- [8]J.Stubbe,Bound states of two-dimensional Schrdinger-Newton equation[J].Ar Xiv:0807.4059,2008.
- [9]Clapp M,Puppe D.Critical point theory with symmetries[J].J.Reine Angew.Math.,1991,418:1-29.
- [10]Willem M.Minimax Theorems[M].//Progress in Nonlinear Differential Equations and Their Applications,Vol.24.Birkh¨auser:Boston,1996.