二维非齐次不可压缩Navier-Stokes/Vlasov-Fokker-Planck方程组的渐近分析Asymptotic analysis for 2D inhomogeneous incompressible Navier-Stokes/Vlasov-Fokker-Planck equations
苏云飞;姚磊;
摘要(Abstract):
研究了二维空间中非齐次不可压缩Navier-Stokes/Vlasov-Fokker-Planck方程组的渐近分析,此模型用于塑造流体-粒子的相互作用.运用紧性方法得到ρε,uε,uε的强收敛,最终得到由关于粒子宏观密度的对流-扩散方程及不可压缩Navier-Stokes方程组成的极限方程组.本文将相关文献的结果推广到非齐次不可压缩的情形.
关键词(KeyWords): 非齐次不可压缩Navier-Stokes/Vlasov-Fokker-Planck方程组;弱解;渐近分析
基金项目(Foundation): 国家自然科学基金(11571280,11331005)
作者(Authors): 苏云飞;姚磊;
参考文献(References):
- [1]Caflisch R,Papanicolaou G C.Dynamic theory of suspensions with Brownian effects[J].SIAM J.Appl.Math.,1983,43(4):885-906.
- [2]Sartory W K.Three-component analysis of blood sedimentation by the method of characteristics[J].Math.Biosci.,1997,33(1/2):145-165.
- [3]Williams F A.Spray Combustion and Atomization[J].Phys.of Fluids,1958,6(1):541-555.
- [4]Hamdache K.Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[J].Janpan J.Indust.Appl.Math.,1998,15(1):51-74.
- [5]Boudin L,Desvillettes L.Grandmont C,et al.Global existence of solutions for the coupled Vlasov and Navier-Stokes equations[J].Differential Integral Equations,2009,22(11/12):1247-1271.
- [6]Chae M,Kang K,Lee J.Global existence of weak and classical solutions for the Navier-Stokes-VlasovFokker-Planck equations[J].J.Differential Equations,2011,251(9):2431-2465.
- [7]Wang D H,Yu C.Global weak solution to the inhomogeneous Navier-Stokes-Vlasov equations[J].J.Differential Equations,2015,259(8):3976-4008.
- [8]Yu C.Global weak solutions to the incompressible Navier-Stokes-Vlasov equations[J].J.Math.Pures Appl.,2013,100(2):275-293.
- [9]Mellet A,Vasseur A.Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations[J].Math.Models Methods Appl.Sci.,2007,17(7):1039-1063.
- [10]Baranger C,Desvillettes L.Coupling Euler and Vlasov equations in the context of sprays:the local-in-time,classical solutions[J].J.Hyperbolic Differ.Equ.,2006,3(1):1-26.
- [11]Carrillo J A,Choi Y P,Karper T K.On the analysis of a coupled kinetic-fluid model with local alignment forces[J].Ann.Inst.H.Poincar′e Anal.Non Lin′eaire,2016,33(2):273-307.
- [12]Goudon T.Asymptotic problems for a kinetic model of two-phase flow[J].Proc.Roy.Soc.Edinburgh Sect.A,2001,131(6):1371-1384.
- [13]Mellet A,Vasseur A.Asymptotic analysis for a Vlasov-Fokker-Planck/compressive Navier-Stokes system of equations[J].Comm.Math.Phys.,2008,281(3):573-596.
- [14]Goudon T,Jabin P E,Vasseur A.Hydrodynamic limit for the Vlasov-Navier-Stokes equations.I.Light particles regime[J].Indiana Univ.Math.J.,2004,53(6):1495-1515.
- [15]Goudon T,Jabin P E,Vasseur A.Hydrodynamic limit for the Vlasov-Navier-Stokes equations.II.Fine particles regime[J].Indiana Univ.Math.J.,2004,53(6):1517-1536.
- [16]Kang M J,Vasseur A.Asymptotic analysis of Vlasov-type equations under strong local alignment regime[J].Math.Models Methods Appl.Sci.,2015,25(11):2153-2173.
- [17]Figalli A,Kang M J.A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment[J].arxiv:1702.08087,2017.
- [18]Karper T K,Mellet A,Trivisa K.Hydrodynamic limit of the kinetic Cucker-Smale flocking model[J].Math.Models Methods Appl.Sci.,2015,25(1):131-163.
- [19]Lions P L.Mathematical Topics in Fluid Mechanics,Vol.II.Compressible Models[M].Oxford Lecture Series in Mathematics and its Applications.New York:The Clarendon Press,1998.
- [20]Lions P L.Mathematical Topics in Fluid Mechanics,Vol.I.Incompressible Models[M].Oxford Lecture Series in Mathematics and its Applications.New York:The Clarendon Press,1996.