CR(n,1)中半环上格林关系的开同余Congruence openings of Green′s relations on a class of semiring CR(n,1)
练利锋;
摘要(Abstract):
首先给出了加法半群是带,乘法半群是完全正则半群的半环上的格林关系所确定的开同余的刻画,并对其相关性质做了一定的探讨,最后证明了CR(n,1)中半环上的S/L°,S/R°分别是左、右约简的.
关键词(KeyWords): 半环;格林关系;开同余;约简
基金项目(Foundation): 重庆市教委项目(KJ1601410);; 重庆市科委项目(cstc2017jcyj A1082)
作者(Authors): 练利锋;
参考文献(References):
- [1]Petrich M,Reilly N R.Completely Regular Semigroup[M].New York:Wiley,1999.
- [2]Howie J M.Fundamentals of Semigroup Theory[M].Oxford:Oxford Science Publication,1995.
- [3]Burris S,Sankppanaver H P.A Course in Universal Algebra[M].New York:Springer Verlag,1981.
- [4]Pastijn F,Zhao X Z.Green′s D-relation for the multiplicative reduct of an idempotent semiring[J].Arch.Math.(Brno),2000,36:77-93.
- [5]Zhao X Z,Shum K P,Guo Y Q.L-subvarieties of the variety of idempotent semirings[J].Algebra Universalis,2001,46:75-96.
- [6]Zhao X Z,Guo Y Q,Shum K P.D-subvarieties of the variety of idempotent semirings[J].Algebra Colloquium,2002,9:15-28.
- [7]Zhao X Z.Idempotent semirings with a commutative additive reduct[J].Semigroup Forum.,2002,64:289-296.
- [8]Pastijn F,Zhao X Z.Varieties of idempotent semirings with commutative addition[J].Algebra Universalis,2005,54:301-321.
- [9]Damljanovi? N,iri?v M,Bogdanovi? S.Congruence openings of additive Green′s relations on a semiring[J].Semigroup Forum.,2011,82(3):437-454.
- [10]练利锋,任苗苗,陈益智.关于一类半环上的格林关系的若干研究[J].纯粹数学与应用数学,2014,30(5):420-427.
- [11]秦官伟,任苗苗,邵勇.关于半环上格林关系的开同余[J].纯粹数学与应用数学,2012,28(5):668-675.