关于局部对称空间中极小子流形的n个整体拼挤定理(英文)On some global pinching theorems for minimal submanifolds of a locally symmetric space。
宋卫东;何国庆;
摘要(Abstract):
研究局部对称δ-拼挤黎曼流形中紧致的极小子流形,给出了若干个整体的拼挤定理,推广了S.S.Chern,M.do Carm o,S.K obayash i及S.T.Y au相应的结果.
关键词(KeyWords): 局部对称;极小子流形;全测地;拼挤常数
基金项目(Foundation): 安徽省教育厅自然科学研究重点项目(2004kj166zd)
作者(Authors): 宋卫东;何国庆;
参考文献(References):
- [1]Chern S S,Carmo M do,Kobayashi S.Minimal submanifolds of a sphere with second fundamental formof constant length[R].Function Analysis and Related Fields,New York:Springer,1970:59-75.
- [2]Yau S T.Submanifolds with constant mean curvature[J].Amer.J.Math.,1974,96:346-366;1975,97:76-100.
- [3]Li A M,Li J M.An intrinsic rigidity theorem for minimal submanifolds in a sphere[J].Arch.Math.,1992,58:582-594.
- [4]Xu H W.On closed minimal submanifolds in pinched Riemannian manifolds[J].Trans,Amer.J.Math.1995,347:1743-1751.
- [5]Shen Y B.On intrinsic rigidity for minimal submanifolds in a sphere[J].Sci.Sinica ser.,1989,32A:769-781.
- [6]Song W D.On mininal submanifolds of a locally symmetric space[J].Chin.Ann.of Math.,1998,19A(6):693-698.
- [7]Golderg S T.Curvature and homology[M].London:Academic Press,1962.