一类被Lévy过程趋动的反射BSDEsA class of RBSDEs driven by Lévy processes
冉启康;
摘要(Abstract):
讨论了一类由Lévy过程趋动的带连续下障碍的反射倒向随机微分方程.使用罚函数方法,证明了在Lipschitz条件下解的存在唯一性.
关键词(KeyWords): Lévy过程;反射倒向随机微分方程;跳时间;罚函数方法
基金项目(Foundation): 教育部高等学校科技创新工程重大项目培育资金(708040);; 贵州省教育厅自然科学基金(2008099)
作者(Authors): 冉启康;
参考文献(References):
- [1]Karoui N El,Kapoudjian C,Pardoux E,et al.Reflected Solutions of Backward SDE and Related Obstacle Problems for PDEs[J].Ann.Probab.,1997,25(2):702-737.
- [2]Hamadene S,Ouknine Y.Reflected backward stochastic differential equation with jumps and random obstacle [J].Journal URL,2003,8(2):1-20.
- [3]范玉莲.带跳反射倒向随机微分方程与相应的积分-偏微分方程障碍问题[J].中国科学:A辑,2006,36(3):281-298.
- [4]J-P Lepeltier,Matoussi A,Xu M.Reflected BSDES under monotonicity general increasing growth conditions [J].Applied Probability Trust.,2004,15(1):1-20.
- [5]Peng shige,Xu Mingyu.The smallest g-supermartingale and reflected BSDE with single and double L~2 obstacles[J].Ann.I.H.Poincare,2005,41:605-630.
- [6]Harraj N,Ouknine Y,Turpin I.Double-barriers-reflected BSDEs with jumps and viscosity solutions of parabolic integrodifferential PDEs[J].Journal of Applied Mathematics and Stochastic Analysis,2005,1:37-53.
- [7]Nualart D,Schoutens W.Chaotic and predictable representations for Levy processes[J].Stoc.Proc.Appl., 2000,90(1):109-122.
- [8]Nualart D,Schoutens W.Backward stochastic differential equations and Feynman-Kac formula for Levy processes with applications in finance[J].Bernoulli,2001,5:761-776.
- [9]Lφkka A.Martingale representation chaos expansion and Clark-Ocone formulas[J].[MPS-RR][1999-22]. http://www.maphysto.dk.
- [10]Bahlali K,Eddahbi M,Essaky E.BSDE associated with Levy processes and application to PDIE[J].Journal of Applied Mathematics and Stochastic Analysis,2003,16(1):1-17.
- [11]Dellacherie C,Meyer P A.Probabilites et Potentiel[M].Paris:Hermaan,1980.