一个关于原数函数S_p(n)的恒等式On an identity of primitive function S_p(n)
史保怀;
摘要(Abstract):
对于任意给定的素数p及正整数n,我们定义幂p的原数函数Sp(n)为最小的正整数m使得pnm!.即就是:Sp(n)=min{m:pnm!}.本文的主要目的是利用初等方法研究函数Sp(n)的算术性质,并得到一个有趣的恒等式.
关键词(KeyWords): 幂p的原数;初等性质;恒等式
基金项目(Foundation): 国家自然科学基金资助项目(10671155)
作者(Authors): 史保怀;
参考文献(References):
- [1]Smarandache F.Only Problems,Not Solutions[M].Chicago:Xiquan Publishing House,1993.
- [2]Zhang Wenpeng,Liu Duansen.On the primitive numbers of power p and its asymptotic property[J].Smarandache Notions Journal,2002,2:171-175.
- [3]Yi Yuan.On the primitive numbers of power p and its asymptotic property[J].Scientia Magna,2005,1(1):175-177.
- [4]Ding Liping.On the primitive numbers of power p and its triangle inequality[C]∥Zhang Wenpeng.Research on Smarandache problems in number theory.Hexis:Phoenix,AZ,2004.
- [5]Xu Zhefeng.Some arithmetical properties of primitive mumbers of power p[J].Scientia Magna,2006,2(1):9-12.
- [6]Tom M Apostol.Introduction to Analytic Number Theory[M].New York:Springer-Verlag,1976.
- [7]潘承洞,潘承彪.初等数论[M].北京:北京大学出版社,2003.