Kantorovitch算子的L_M~*逼近L_M—Approximation by Kantorovitch Operator
崔云安;
摘要(Abstract):
<正> 1.符号与基本结果对对[0,1]上的可积函数f(x),Kantorovitch算子定义为: K_n(f,x)=(n+1)sum from k=0 to n(p_(n-K)(x)integral from ?(f(t)dt)其中p_(n-K)(x)=(n K)xK(1-x)K(1-x)(n-K),I_K=[K/(n+1),(K+1)/(n+1)]。记M(u)是N-函数,N(v)是其young意义下的余函数,用M(u)∈△_2表示,存在正数c,u_0满足
关键词(KeyWords):
基金项目(Foundation): 国家自然科学基金
作者(Authors): 崔云安;
参考文献(References):
- [1] . G. G. Lorentz, Bemstein ploynomials, univ. of Taronto press. 1953
- [2] . 吴从,王延辅,Orlicz空间及其应用,黑龙江科技出版社,1983
- [3] . A. R. K. Kamazanov, Analysis Math, 10 (1984) 117--131
- [4] . E. M. Stein, singularand, Integrals and Differentiability properties princetion vniv. press, 1970.
- [5] . G. G. Lorentz, Majorants in Spaces of Integrals, 77 (1975)
- [6] . 那汤松,实变函数论,商务出版社,1953
- [7] . M. A. Krasnoselsky,凸函数和Orlicz空间(吴从译)科学出版社1962
- [8] . R. BOJANIC and O. SHISHA, J. Approx. Theory 13 (1975) 66--72