可换逻辑的代数语义综述A survey of algebraic semantic systems
杨小飞;辛小龙;
摘要(Abstract):
主要介绍九种可换逻辑的语义系统,它们是布尔代数, MV-代数, BL-代数, MTL-代数,剩余格, Hoops,半Hoops, EQ-代数和相等代数,并给出相应的例子.进而结合作者的工作介绍了这些代数系统在概率、格序群和拓扑中的研究进展,同时给出如下看法:布尔代数是经典逻辑;从代数角度讨论了经典逻辑与模糊逻辑的区别.最后给出值得进一步研究的公开问题.
关键词(KeyWords): 逻辑;语义系统;剩余结构;拓扑;格序群
基金项目(Foundation): 国家自然科学基金(11971384)
作者(Authors): 杨小飞;辛小龙;
参考文献(References):
- [1] Chang C C. Algebraic analysis of many-valued logic[J]. Trans. Am. Math. Soc., 1958,88(2):467-490.
- [2] H′ajek P. Basic fuzzy logic and BL-algebras[J]. Soft Comput., 1998,2(3):124-128.
- [3] Esteva F, Godo L. Monoidal t-norm based logic:towards a logic for left-continuous t-norms[J].Fuzzy Sets Syst., 2001,124(3):271-288.
- [4] Ward M, Dilworth R P. Residuated lattices[J]. Trans. Am. Math. Soc., 1939,45(3):335-354.
- [5] Esteva F, Godo L, H′ajek P, et al. Hoops and fuzzy logic[J]. J. Log. Comput., 2003,13(4):532-555.
- [6] Chang C C. A new proof of the completeness of the Lukasiewicz axioms[J]. Trans. Am. Math. Soc.,1959,93(1):74-80.
- [7] Ono H. Substructural logics and residuated lattices-an introduction[J]. Trends in Logic, 2003,20(1):193-228.
- [8] Nov′ak V, Baets B D. EQ-algebras[J]. Fuzzy Sets Syst., 2009,160(20):2956-2978.
- [9] Jenei S. Equality algebras[J]. Studia Logica, 2012,100(6):1201-1209.
- [10] Davey B A, Priestley H A. Introduction to Lattices and Order[M]. Cambridge:Cambridge University Press, 1990.
- [11]王国俊.非经典逻辑与近似推理[M].北京:科学出版社, 2000.
- [12] Swamy K L N. Dually residuated lattice ordered semigroups[J]. Math. Ann., 1965,159(2):105-114.
- [13] Xin X L. Residuated EQ-algebras may not be residuated lattices[J]. Fuzzy Sets Syst., 2020,382(9):120-128.
- [14] Ciungu L C. Derivation operators on generalized algebras of BCK logic[J]. Fuzzy Sets Syst.,2021,407(3):175-191.
- [15] Bou F, Esteva F, Godo L, et al. On the minimum many-valued modal logic over a finite residuated lattice[J]. J. Log. Comput., 2011,21(5):739-790.
- [16]Mundici D. Interpretation of AFC*-algebras in Lukasiewicz sentential calculus[J]. J. Funct. Anal.,1986,65(1):15-63.
- [17] Dvurecˇenskij A. Pseudo MV-algebras are intervals in?-groups[J]. J. Austral. Math. Soc., 2002,72(3):427-446.
- [18] Nola A D, Lenzi G, Russo A C. Some invariant skeletons for?-u groups and MV-algebras[J].Order, 2019,36(1):77-97.
- [19] Gusic′I. A topology on lattice ordered groups[J]. Proc. Am. Math. Soc., 1998,126(9):2593-2597.
- [20] Luan C, Yang Y C. Filter topologies on MV-algebras[J]. Soft Comput., 2017,21(10):2531-2535.
- [21] Luan W, Zhao X T, Yang Y C. Topological characterization of semisimple MV-algebras[J]. Fuzzy Sets Syst., 2021,406(1):11-21.
- [22] Wu H R, Li Q G, Yu B. A topology on lattice-ordered groups[J]. J. Nonlinear Sci. Appl., 2018,11(5):701-712.
- [23] Mundici D. Averaging the truth-value in Lukasiewicz logic[J]. Studia Logica, 1995,55(1):113-127.
- [24] Zhou H J, Zhao B. Generalized Bosbach and Riecˇan states based on relative negations in residuated lattices[J]. Fuzzy Sets Syst., 2012,187(1):33-57.
- [25] Liu L Z. On the existence of states on MTL-algebras[J]. Inf. Sci., 2013,220(1):559-567.
- [26] Flaminio T, Montagna F. MV-algebras with internal states and probabilistic fuzzy logics[J]. Int.J. Approx. Reason., 2009,50(1):138-152.
- [27] He P F, Zhao B, Xin X L. States and internal states on semihoops[J]. Soft Comput., 2017,21(11):2941-2957.
- [28] He P F, Xin X L, Yang Y W. On state residuated lattices[J]. Soft Comput., 2015,19(8):2083-2094.
- [29] Dvureˇcenskij A, Rachunek J,ˇSalounov′a D. State operators on generalizations of fuzzy structures[J]. Fuzzy Sets Syst., 2012,187(1):58-76.
- [30] Ciungu L C, Dvureˇcenskij A, Hycˇko M. State BL-algebras[J]. Soft Comput., 2010,15(4):619-634.
- [31] Dyba M, Nov′ak V. EQ-logics with delta connective[J]. Iran. J. Fuzzy Syst., 2015,12(2):41-61.
- [32] Ma Z M, Hu B Q. EQ-algebras from the point of view of generalized algebras with fuzzy equalities[J]. Fuzzy Sets Syst., 2014,236(1):104-112.
- [33] Yang J, Xin X L, He P F. On topological EQ-algebras[J]. Iran. J. Fuzzy Syst., 2018,15(6):145-158.
- [34] Wang W, Xin X L, Wang J T. EQ-algebras with internal states[J]. Soft Comput., 2018,22(9):2825-2841.
- [35] Xin X L. State theory on bounded hyper EQ-algebras[J]. Soft Comput., 2020,24(15):11199-11211.
- [36] Xin X L, Khan M, Jun Y B. Generalized states on EQ-algebras[J]. Iran. J. Fuzzy Syst., 2019,16(1):159-172.
- [37] Xin X L, Ma Y C, Fu Y L. The existence of states on EQ-algebras[J]. Math. Slovaca, 2020,70(3):527-546.
- [38]辛小龙,王军涛,杨将.逻辑代数上的非概率测度[M].北京:科学出版社, 2019.