C~1有理三次可控保形插值曲线Adjustable Shape-preserving Interpolation by C~1 Rational Cubic Curves
康宝生;叶正麟;
摘要(Abstract):
<正> 一、引言给定插值数据点集{(x_i,y_i)}_(i-0)n,在许多实际应用中(VLSI,CAD/CAM等),要求插值曲线除满足一定的光滑性条件外,还必须反映插值点集的整体几何性质。例如,通常要求单调(凸)数据产生的插值曲线是单调(凸)的。分段三次Hermite插值多项式是外形
关键词(KeyWords):
基金项目(Foundation):
作者(Authors): 康宝生;叶正麟;
参考文献(References):
- [1] Boehm W., Farin, G. and Kahmann. I., A survey of Curv and surface methods in GAGD, Computer. Aided Geo. Des. 1 (1984) , 1--60.
- [2] Piegl. L., Interactive data interpolation by rational Bezier curves, IEEE CG & A, 4 (1987) , 45--58.
- [3] Goodman, T. N. T. and Unsworth, K., Shapc preserving interpolation by curvature param, etric Curves, Computer Aided Geo. Des., 5 (1988) , 323-340.
- [4] Piegl L., Hermite-and coons-like interpolation using rational Bezier spproximation form with infinite control points, CAD, 20 (1988) , 2--10.
- [5] Fletcher, G. Y. and McAllister, D. F., Natural bias approach to shape preserving curves, CAD, 1 (1986) , 49--52
- [6] Gregory, J. A. & Sarfraz, M., A retional cubic spilne with tension, CAGD, 1-4 (1990) , 1--14.
- [7] 刘鼎元.有理Bezier曲线.《浙江大学学报》,1982年计算几何文集133--149.