广义KdV-Burgers方程的势对称和不变解Potential symmetries and invariant solutions of generalized KdV-Burgers equation
朱永平;吉飞宇;陈晓艳;
摘要(Abstract):
用微分形式的吴方法讨论了广义KdV-Burgers方程不同系数情况下的势对称,并且利用这些对称求得了相应的不变解,这些解对进一步研究广义KdV-Burgers方程所描述的物理现象具有重要意义.
关键词(KeyWords): KdV-Burgers方程;微分形式的吴方法;势对称;不变解
基金项目(Foundation): 国家自然科学基金(10671156)
作者(Authors): 朱永平;吉飞宇;陈晓艳;
参考文献(References):
- [1]Peter J Olver.Applications of Lie Groups to Differential Equations[M].New York:Spring-Verlag,1986.
- [2]王珍,吉飞宇.mKdV方程的对称和群不变解[J].纯粹数学与应用数学,2011,27(6):778-780.
- [3]姬利娜,张颖.多孔介质方程的广义条件对称和精确解[J].纯粹数学与应用数学,2011,27(3):339-342.
- [4]George W Bluman,Sukeyuki Kumei.Symmetries and Integration Methods for Differential Equations[M].New York:Spring-Verlag,1989.
- [5]Gandarias M L.New potential symmetries for some evolution equations[J].Physica A,2008,387(10):2234-2242.
- [6]张红霞,郑丽霞.Benney方程的势对称和不变解[J].动力与控制学报,2008,6(3):220-222.
- [7]饶云高,朝鲁.广义KdV-Burgers方程新形势下的势对称分类[J].内蒙古工业大学学报,2012,31(1):1-6.
- [8]郭柏灵.一类更广泛的Kdv方程的整体解[J].数学学报,1982,25(6):641-656.
- [9]Ablowitz M J.Clarkson P A.Solitons,Nonlinear Evolution Equations and Inverse Scatting[M].New York:Cambridge University Press,1991.
- [10]Zhang S L,Wang Y,Lou S Y.Approximate generalized conditional symmetries for perturbed evolution equations[J].Commu.Theor.Phys.,2007,47(6):975-980.
- [11]Zhang S L,Li J N.Initial-value problem for extended KdV-Burgers equations via generalized conditional symmetries[J].Chinese Physics Letters,2007,24(6):1433-1436.
- [12]朝鲁.微分方程(组)对称向量的吴-微分特征列算法及其应用[J].数学物理学报,1999,19(3):326-332.