图的联结数与分数κ-消去图Binding number conditions for fractional k-deleted graphs
周思中;段滋明;
摘要(Abstract):
设G是一个图,若对于图G的任一条边e,G-e都存在一个分数k-因子,则称G是一个分数k-消去图.若k=2,则称分数k-消去图为分数2-消去图.本文证明了当bind(G)≥2,并且δ(G)≥3时,G是分数2-消去图.
关键词(KeyWords): 图;联结数;分数κ-因子;分数κ-消去图
基金项目(Foundation): 江苏省高校自然科学基础研究项目(07KJD110048)
作者(Authors): 周思中;段滋明;
参考文献(References):
- [1]Woodall D R.The binding number of a graphand its Anderson number [J].J.Combin.Theory(Ser.B),1973, 15:225-255.
- [2]Bondy J A,Murty U S R.Graph Theory with Applications [M].London:Macmillan,1976.
- [3]Edward R Schinerman,Ullman D H.Fractional Graph Theory [M].New York:John Wiley and Son.Inc., 1997.
- [4]Liu Guizhen,Zhang Lanju.Fractional (g,f)-factors of graphs [J].Acta Math Scientia (Ser.B),2001,21(4):541- 545.
- [5]Liu Gnizhen,Zhang Lanju.Maximum fractional (0,f)-factors of graphs [J].Mathematica Applicata,2000, 13(1):31-35.
- [6]Yang Jingbo.Fractional (g,f)-covered graph and fractional (g,f)-deleted graph [C] //Proceedings of the Sixth National Conference of Operation Research Society of China.Shanghai: Shanghai University Press. 2000.
- [7]Li Zhenping,Yan Guiying,Zhang Xiangsun.On fractional (g,f)-deleted graphs [J].Mathematica Applicata (in Chinese),2003,16(1):148-154.
- [8]Li Zhenping,Yah Gniying,Zhang Xiangsun.Isolated toughness and fractional k-deleted graphs [J].OR Transactions (in Chinese),2003,7(4):79-85.
- [9]Zhou Sizhong,Shang Changming.Some sufficient conditions with fractional (g,f)-factors in graphs [J].Chi- nese Journal of Engineering Mathematics (in Chinese),2007,24(2):329-333.
- [10]Anstee R R.An algorithmic proof tutte's f-factor theorem [J].J.Algorithms,1985,6:112-131.