非齐次树上马氏链的若干强偏差定理A class of strong deviation theorems for Markov chain fields on a non-homogenous tree
金少华;赵旋;陈秀引;
摘要(Abstract):
通过构造适当的非负鞅,将Doob鞅收敛定理应用于几乎处处收敛的研究,给出了一类非齐次树上马氏链场加权和滑动平均的若干强偏差定理.
关键词(KeyWords): 非齐次树;鞅;马氏链;强偏差定理
基金项目(Foundation): 河北省高等学校科学技术研究项目(ZD2014051)
作者(Authors): 金少华;赵旋;陈秀引;
参考文献(References):
- [1]Benjamini I,Peres Y.Markov chains index by trees[J].The Annals of Probability,1994,22(1):219-243.
- [2]Dong Y,Yang W G,Bai J F.The strong law of large numbers and the Shannon-Mc Millan theorem for nonhomogeneous Markov chains indexed by a Cayley tree[J].Statist.Probab.Lett.,2011,81(12):1883-1890.
- [3]韩大钊,石志岩,杨卫国.树上路径过程的随机路径条件概率的强极限定理[J].数学杂志,2015,35(2):462-468.
- [4]Shi Z Y,Yang W G.Some limit properties for the m-th-order non-homogeneous Markov chains indexed by an m rooted Cayley tree[J].Statistics and Probability Letters,2010,80(15):1223-1233.
- [5]Yang W G.A class of deviation theorems for the random fields associated with non-homogeneous Markov chains indexed by a Bethe tree[J].Stochastic Analysis and Applications,2012,30(2):220-237.
- [6]石志岩,韩大钊,杨卫国.双根树上二阶非齐次马氏链的强大数定律和Shannon-Mc Millan定理[J].应用概率统计,2015,31(2):125-134.