(2+1)维广义破裂孤子方程的非局域对称及相互作用解Nonlocal symmetries and interaction solutions for the new (2+1) dimensional generalized breaking soliton equation
白喜瑞;沃维丰;
摘要(Abstract):
根据截断的Painlevé分析展开法及相容Riccati展开(CRE)法,研究了(2+1)维广义破裂孤子方程的非局域对称.利用非局域对称局域化的方法,得到了与Schwarzian变量相对应的对称群.同时,证明了这个方程是CRE可积的,并给出了它的孤立波与椭圆周期波之间的相互作用解.
关键词(KeyWords): (2+1)维广义破裂孤子方程;非局域对称;CRE方法;相互作用解
基金项目(Foundation): 国家自然科学基金(11201249);; 浙江省自然科学基金(LY16A010002)
作者(Authors): 白喜瑞;沃维丰;
参考文献(References):
- [1]Weiss J,Tabor M,Carnevale G.The Painlev′e property for partial differential equations[J].Journal of Mathematical Physics,1983,24(3):522-526.
- [2]Newell A C,Tabor M,Zeng Y B.A unified approach to Painlev′e expansions[J].Physica D:Nonlinear Phenomena,1987,29(1-2):1-68.
- [3]Lou S Y.Residual symmetries and Backlund transformations[J].ar Xiv preprint,ar Xiv:1308.1140,2013.
- [4]Gao X N,Lou S Y,Tang X Y.Bosonization,singularity analysis,nonlocal symmetry reductions and exact solutions of supersymmetric Kd V equation[J].Journal of High Energy Physics,2013,2013(5):29.
- [5]Lou S Y.Consistent Riccati expansion for integrable systems[J].Studies in Applied Mathematics,2015,134(3):372-402.
- [6]Yu W F,Lou S Y,Yu J,et al.Interactions Between Solitons and Cnoidal Periodic Waves of the(2+1)-Dimensional Konopelchenko-Dubrovsky Equation[J].Communications in Theoretical Physics,2014,62(3):297-300.
- [7]Ruan S Q,Yu W F,Yu J,et al.The consistent Riccati expansion and new interaction solution for a Boussinesq-type coupled system[J].Chinese Physics B,2015,24(6):060201.
- [8]Chen M X,Hu H C,Zhu H D.Consistent Riccati expansion and exact solutions of the Kuramoto-Sivashinsky equation[J].Applied Mathematics Letters,2015,49:147-151.
- [9]Wang H,Wang Y H.CRE solvability and soliton-cnoidal wave interaction solutions of the dissipative(2+1)-dimensional AKNS equation[J].Applied Mathematics Letters,2017,69:161-167.
- [10]Calogero F,Degasperis A.Nonlinear evolution equations solvable by the inverse spectral transform-I[J].ILNuovo Cimento B(1971-1996),1976,32(2):201-242.
- [11]Cheng W G,Li B,Chen Y.Nonlocal symmetry and exact solutions of the(2+1)-dimensional breaking soliton equation[J].Communications in Nonlinear Science and Numerical Simulation,2015,29(1):198-207.
- [12]Cheng W G,Li B,Chen Y.Construction of soliton-cnoidal wave interaction solution for the(2+1)-dimensional breaking soliton equation[J].Communications in Theoretical Physics,2015,63(5):549-553.
- [13]Yildiz G,Daghan D.Solution of the(2+1)dimensional breaking soliton equation by using two different methods[J].Journal of Engineering Technology and Applied Sciences,2016,1(1):11-16.
- [14]Xu G Q.Integrability of a(2+1)-dimensional generalized breaking soliton equation[J].Applied Mathematics Letters,2015,50:16-22.
- [15]Peng Y Z.A new(2+1)-dimensional Kd V equation and its localized structures[J].Communications in Theoretical Physics,2010,54(5):863-865.
- [16]Chen J C,Ma Z Y.Consistent Riccati expansion solvability and soliton-cnoidal wave interaction solution of a(2+1)-dimensional Korteweg-de Vries equation[J].Applied Mathematics Letters,2017,64:87-93.
- [17]Wang Y H,Chen Y.Binary Bell polynomial manipulations on the integrability of a generalized(2+1)-dimensional Korteweg-de Vries equation[J].Journal of Mathematical Analysis and Applications,2013,400(2):624-634.
- [18]Lu X,Lin F H,Qi F H.Analytical study on a two-dimensional Korteweg-de Vries model with bilinear representation,Backlund transformation and soliton solutions[J].Applied Mathematical Modelling,2015,39(12):3221-3226.
- [19]Chai J,Tian B,Sun W R,et al.Solitons and dynamic analysis for a(2+1)-dimensional breaking soliton equation[J].Superlattices and Microstructures,2017,101:584-591.
- [20]Wazwaz A M.A New Integrable(2+1)-dimensional generalized breaking soliton equation:N-soliton solutions and traveliwave Solutions[J].communications in theoretical physics,2016,66(4):385-388.
- [21]Zhao Z L,Han B.Quasiperiodic wave solutions of a(2+1)-dimensional generalized breaking soliton equation via bilinear Backlund transformation[J].The European Physical Journal Plus,2016,131(5):128.
- [22]Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer,1989.