关于强拟凸域内解析子族的延拓On Extension of Analytic Subvariety in a Strongly Pseudo-Convex Domain
张锦豪;
摘要(Abstract):
<正> 设Ω■_n为开集,V是Ω中的子集,如果对Ω中每一点都存在一个邻域U,使V∩U是U上有限个全纯函数的公共零点,那么V称做Ω内的一个解析子族。若存在开集Ω′■Ω,及Ω′中的解析子族▽′,使得在Ω上成立V′=V,那么V′是V的解析延拓,简称延拓。在n=1
关键词(KeyWords):
基金项目(Foundation):
作者(Authors): 张锦豪;
参考文献(References):
- [1] S. J. Greenfield, Cauchy-Riemann Equations Several in Vaviables. Ann. della Se. Norm. Sup. di Pisa V22, N2, (1968) pp275-314.
- [2] L. Hormander, An Introduction to Complex Anaiysis in Severel Variables, Van Nostrand, 1966.
- [3] R. Narasimhan, Introduction to the Theory of Analytic Spaces. Springer Lecture Notes, no. 25, 1966.
- [4] Y.-T. Siu, Techniques of Extension of Analytic Objects, Lecture notes in pure and appl. Math., V8. 1974.
- [5] G. Tomassini, Tracee dolle funzioni holomorfe sulle sottovarieta analitiche reali d'una varieta complessa, Ann della, Sc. Norm. Sup. di Pisa, 20 (1966) , 31-44.