具有线性脉冲的周期捕食系统的持久性Permanence in a periodic predator-prey system with linear impulsive perturbations
陈丹;许宗文;张树文;
摘要(Abstract):
研究具有Holling IV功能性反应和脉冲的周期捕食食饵系统.找到了影响该系统动力学行为的阈值R0.证明了当R0<1时,该系统的食饵灭绝周期解是局部渐近稳定的;当R0>1时,该系统的食饵灭绝周期解变得不稳定且食饵将一致持久.
关键词(KeyWords): 捕食食饵系统;脉冲;Holling IV功能性反应;持续生存;局部渐近稳定
基金项目(Foundation): 福建省教育厅科技项目(JB12252)
作者(Authors): 陈丹;许宗文;张树文;
参考文献(References):
- [1]Hui Jing,Chen Lansun.Extinction and permanence of a predator-prey system with impulsive effect[J].Mathemarlca Applicata,2005,18(1):1-7.
- [2]张树文,张耘嘉,谭德君.具脉冲效应和Beddington-DeAnglis功能反应时滞周期捕食系统[J].纯粹数学与应用数学,2010,4:534-540.
- [3]Zhang Shuwen,Tan Dejun.Permanence in a food chain system with impulsive perturbations[J].Chaos,Solitions and Fractals,2009,40:392-406.
- [4]Xu Rui,Chen Lansun.Persistence and global stability for three-species ratio-dependent predator-preysystem with time delays[J].Journal System Science&Mathematics Science,2001,21(2):204-212.
- [5]许斌,陈狄岚,孙继涛.一类具有功能反应的生物捕食系统的脉冲控制[J].生物数学学报,2004,19(1):77-81.
- [6]Liu Xianning,Chen Lansun.Complex dynamics of Holling type Lotka-volterra predator-prey system withimpulsive pertubations on the predator[J].Chaos,Solitons and Fractals.2003,16:311-320.