凸域上拟双曲测地线直径的Gehring-Hayman恒等式The Gehring-Hayman identity for the diameter of quasihyperbolic geodesics in convex domain
钱伟茂;张益池;
摘要(Abstract):
将平面Jordan域上关于双曲测地线直径的Gehring-Hayman不等式推广到n维空间凸域上的拟双曲测地线.利用Mbius变换和拟双曲度量证明了n维空间凸域上连接任意二点x和y的拟双曲测地线的直径等于x与y之间的Euclidean距离.所得结果推广和改进了相关已有结果.
关键词(KeyWords): 凸域;拟双曲长度:拟双曲距离;拟双曲测地线;Gehring-Hayman不等式
基金项目(Foundation): 浙江省自然科学基金(LY13A010004);; 国家开放大学基金(Q1601E-Y);; 浙江省教育厅基金(Y201223519)
作者(Authors): 钱伟茂;张益池;
参考文献(References):
- [1]Visl J.Lectures on n-Dimensional Quasiconformal Mappings[M].New York:Springer Verlag,1971.
- [2]Gehring F W,Hayman W K.An Inequality in the theory of conformal mapping[J].J.Math.Pure Appl.,1962,41:353-361.
- [3]Pommerenke Ch,Rohde S.The Gehring-Hayman inequality in conformal mapping[C]//Gehring F W,Duren P L.Quasiconformal Mapping and Analysis.New York:Springer Verlag,1998.
- [4]Heinonen J.The diameter conjecture for quasiconformal maps is true in space[J].Proc.Amer.Math.Soc.,1995,123(6):1709-1718.
- [5]Martio O,Nakki R.Boundary H¨older continuity and quasiconformal mappings[J].J.London Math.Soc.,1991,44(2):339-350.
- [6]Jaenisch S.Length distortion of curves under conformal mappings[J].Michigan Math.J.,1968,15:121-128.
- [7]Oyma K.Harmonic measure and conformal length[J].Proc.Amer.Math.Soc.,1992,115(3):687-689.
- [8]Ferna′ndez J L,Hamilton D H.Length of curves under conformal mappings[J].Comment.Math.Helv.,1987,62(1):122-134.
- [9]Gehring F W,Hayman W K,Hinkkanen A.Analytic functions satisfying Ho¨lder conditions on the bound-ary[J].J.Approx.Theory,1982,35(3):243-249.
- [10]Kaufman R,Wu J M.Distances and the Hardy-Littlewood property[J].Complex Variables Theory Appl.,1984,4(1):1-5.
- [11]Kim K.Harmonic measure and hyperbolic distance in John disks[J].Math.Scand.,1998,83(2):283-299.
- [12]Balogh Z M,Buckley S M.Geometric characterizations of gromov hyperbolicity[J].Invent.Math.,2003,153(2):261-301.
- [13]Bishop C J,Jones P W.Harmonic measure and arclength[J].Ann.Math.,1990,132(3):511-547.
- [14]Llorente J G.On the Gehring-Hayman property,the Privalov-Riesz theorems,and doubling measures[J],Michigan Math.J.,2004,52(3):553-571.
- [15]Gehring F W,Palka B P.Quasiconformally homogeneous domains[J].J.Analyse Math.,1976,30:172-199.
- [16]Gehring F W,Osgood B G.Uniform domains and the quasi-hyperbolic metric[J].J.Analyse Math.,1979,36:50-74.
- [17]Herron D A,Koskela P.Conformal capacity and the quasihyperbolic metric[J].Indiana Univ.Math.J.,1996,45(2):333-359.
- [18]Martin G J.Quasiconformal and bi-Lipshitz homeomorphisms uniform domains and the quasihyperbolicmetric[J].Trans.Amer.Math.Soc.,1985,92(1):169-191.
- [19]Martin G J,Osgood B G.The quasihyperbolic metric and associated estimates on the hyperbolic metric[J].J Analyse Math.,1986,47:37-53.
- [20]Herron D A.John domains and the quasihyperbolic metric[J].Complex Variables Theory Appl.,1999,39(4):327-334.
- [21]Gehring F W,Hag K,Martio O.Quasihyperbolic geodesics in John domains[J].Math.Scand.,1989,65(1):75-92.
- [22]Heinonen J,Nakki R.Quasiconformal distortion on arcs[J].J.Anal.Math.,1994,63:19-53.
- [23]VislJ.Quasihyperbolic geodesic in convex domains[J].Results Math.,2005,48(1/2):184-195.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享