复射影空间中具有常数量曲率的全实子流形On totally real submanifolds with constant scalar carvature in the complex projective space
刘敏;宋卫东;
摘要(Abstract):
通过活动标架法,研究了复射影空间中具有常数量曲率的全实子流形,得到其成为全脐子流形的刚性定理,并推广了相关结果.
关键词(KeyWords): 复射影空间;全实子流形;数量曲率;全脐
基金项目(Foundation): 安徽省高等学校优秀青年人才基金(2011SQRL021ZD);; 安徽省高等学校自然科学研究项目基金(KJ2011Z149)
作者(Authors): 刘敏;宋卫东;
参考文献(References):
- [1]Cheng S Y,Yau S T.Hypersurfaces with constant scalar curvature[J].Math.Ann.,1977,225:195-204.
- [2]Zhang J F.An rigidity theorem for submanifolds in Sn+p with constant scalar curvature[J].Zhejiang Univ.Science:A,2005,6(4)1:322-328.
- [3]宋卫东,刘敏.关于局部对称共形平坦空间中具有常数量曲率的子流形[J].数学物理学报,2010,30:1102-1110.
- [4]朱静勇.Complete totally real pseudo umbilical submanifolds with constant scalar curvature in a complexspace form[J].纯粹数学与应用数学,2011,27(1):116-122.
- [5]张量.关于复射影空间的全实伪脐子流形[J].数学研究与评论,2008(2):421-428.
- [6]Okumua M.Hypersurfaces and a pinching problem on the second fundamental tensor[J].Amer.J.Math.,1974,96:207-213.
- [7]Li A M,Li J M.An intrinsic rigidity theorem for minimal submanifolds in sphere[J].Arch.Math.,1992,58:582-594.