关于两类color有序分拆的一个恒等式A identity about two classes of color compositions
郭育红;
摘要(Abstract):
考虑了正整数n的有序分拆中,分部量1有两种形式的情形,发现正整数n的分部量1有两种形式的有序分拆数等于第2n+1个Fiboacci数F2n+1.进一步得到了一个涉及正整数n的分部量1有两种形式的有序分拆数与正整数的n-color有序分拆数之间的一个恒等式.并且给出了正整数n的分部量1有两种形式的有序分拆数的一个显式计数公式.
关键词(KeyWords): n-color有序分拆;Fibonacco数;恒等式;组合双射
基金项目(Foundation): 国家自然科学基金(11461020)
作者(Authors): 郭育红;
参考文献(References):
- [1]Mac Mahon P A.Combinatory Analysis[M].New York:AMS Chelsea Publishingvol,2001.
- [2]Agarwal A K,Andrews G E.Rogers-Ramanujan identities for partition with’N copies of N’[J].J.Comb.Theory A.,1987,45(1):40-49.
- [3]Agarwal A K.n-color compositions[J].Indian J.Pure Appl.Math.,2000,31(11):1421-1427.
- [4]Agarwal A K.An analogue of Euler’s identity and new Combinatorial properties of n-color com-positions[J].J.Computational and Applied Mathematics,2003,160:9-15.
- [5]Narang G,Agarwal A K.Lattice paths and n-color compositions[J].Discrete Mathematics,2008,308:1732-1740.
- [6]Guo Y H.Some n-color compositions[J].Journal of integer sequence,2012(15):1212.
- [7]Guo Y H.n-color even compositions[J].Ars Combina.,2013,109(2):425-432.
- [8]Narang G,Agarwal A K.n-color self-inverse compositions[J].Proc.Indian Acad.Sci,2006,116(3):257-266.
- [9]Guo Y H.n-color even self-inverse compositions[J].Proc.Indian Acad.Sci(Math.Sci.),2010,120(1):27-33.
- [10]Guo Y H.n-color odd self-inverse compositions[J].Journal of integer sequence,2014,Vol.17:Article 14.10.5.
- [11]郭育红.关于自反的n-colour有序分拆的一个关系式[J].武汉大学学报:2012,58(5):430-432.
- [12]郭育红.关于正整数有序分拆的两个组合双射[J].纯粹数学与应用数学,2016,32(1):1-5.
- [13]郭育红.关于正整数有序分拆的一些恒等式和n-colour有序分拆的两个组合性质[J].纯粹数学与应用数学,2012,28(5):590-613.
- [14]Shapcott C.New bijections from n-color compositions[J].Journal of Combinatorics,2013,4(3):373-385.
- [15]Munagi A O.Sellers J A.Some Inplace Identities for Integer Compositions[J].Quaestiones mathematicae,2015,38(4):535-540.