次可加函数列的加权上度量平均维数(英文)Weighted upper metric mean dimension for subadditive potentials
丁志慧;历智明;
摘要(Abstract):
介绍了次可加函数列的加权上度量平均维数和加权上测度理论平均维数,同时给出了关于次可加函数列的加权上平均维数的变分原理.
关键词(KeyWords): 次可加势函数;加权上平均维数;变分原理
基金项目(Foundation): 国家自然科学基金(11871394);; 陕西省科技厅基金(2019JM-123)
作者(Authors): 丁志慧;历智明;
参考文献(References):
- [1] Yano K. A remark on the topological entropy of homeomorphisms[J]. Invent. Math., 1980,59(3):215-220.
- [2] Gromov M. Topological invariants of dynamical systems and spaces of holomorphic maps I[J].Math. Phys. Anal. Geom., 1999,2(4):323-415.
- [3] Lindenstrauss E, Tsukamoto M. From rate distortion theory to metric mean dimension:variational principle[J]. IEEE Trans. Inform. Theory, 2018,64(5):3590-3609.
- [4] Lindenstrauss E, Weiss B. Mean topological dimension[J]. Israel J. Math., 2000,115:1-24.
- [5] Lindenstrauss E. Mean dimension, small entropy factors and an embedding theorem[J]. Inst.Hautes tudes Sci. Publ. Math., 1999,89:227-262.
- [6] Coornaert M. Topological Dimension and Dynamical Systems[J]. Berlin:Springer-Verlag, 2015.
- [7] Katok A. Lyapunov exponents, entropy and periodic orbits for diffeomorphisms[J]. Inst. Hautes E′tudes Sci. Publ. Math., 1980,51:137-173.
- [8] Walters P. An Introduction to Ergodic Theory[M]. Berlin:Springer-Verlag, 1982.