一类含导数的p-Laplacian方程m-点边值问题的正解存在性Existence of positive solutions for the p-Laplacian equation m-point boundary value problems with derivative
刘玉玲;
摘要(Abstract):
通过利用Krasnosel′skii不动点定理的扩充定理,对于一类含导数的一维p-Laplacian方程m-点边值问题建立了至少一个正解的存在性定理,并给出例子加以说明.
关键词(KeyWords): p-Laplacian方程;m-点边值问题;存在性;正解
基金项目(Foundation):
作者(Authors): 刘玉玲;
参考文献(References):
- [1]Ma R,Castanda N.Existence of solutions of nonlinear m-point boundary-value problems[J].J.Math.Anal.Appl.,2001,256(2):556-567.
- [2]Ma Ruyun.Positive solutions of nonlinear m-piont boundary value problems[J].Comput.Math.Appl.,2001,42(6/7):755-765.
- [3]Ma Ruyun.Existence of positive solutions for second order m-piont boundary value problems[J].Ann.Polon.Math.,2002,79(3):265-276.
- [4]Bai C,Fang J.Existence of mulitple positive solutions of nonlinear m-point boundary value pwoblems[J].J.Math.Anal.Appl.,2003,281(1):76-85.
- [5]Liu Y,Ge W.Multiple positive solutions to a three-point boundary value problem with p-Laplacian[J].J.Math.Anal.Appl.,2003,277(1):293-302.
- [6]Guo Y,Ge W.Positive solutions for three-point boundary value problems with edpendence on the firstorder derivative[J].J.Math.Anal.Appl.,2004,290(1):291-311.
- [7]Yao Qingliu.An existence theorem for a nonlinear elastic beam equation with all order derivatives[J].Journal of Mathematical Study,2005,38(1):24-28.
- [8]马如云.非线性常微分方程非局部问题[M].北京:科技出版社,2004.