两个数论函数及其方程Two number theoretical functions and the equation involving them
吕志宏
摘要(Abstract):
对于任意给定的自然数n,著名的Eu ler函数φ(n)定义为不大于n且与n互素的正整数的个数.ω(n)表示n的所有不同素因子的个数.本文研究了方程φ(n)=2ω(n)的可解性,并给出了该方程的所有正整数解.
关键词(KeyWords): Euler函数;方程的解;解的个数
基金项目(Foundation): 国家自然科学基金资助(60472068)
作者(Author): 吕志宏
参考文献(References):
- [1]G upta H.O n a prob lem of E rd。os[J].Am er.M ath.M on th ly,1950,57:326-329.
- [2]E rd。os P.O n a con jecture of K lee[J].Am er.M ath.M on th ly,1951,58:98-101.
- [3]W oo lridge K.V a lues taken m any tim es by Eu ler′s ph i-function[J].P roc.Am er.M ath.Sco.,1969,76:229-234.
- [4]E rd。os P.O n the norm a l num ber of prim e factors of p-1 and som e re lated prob lem s concern ing Eu ler′sφfunction[J].Q uart.J.M ath.O x ford Ser.,1935,6:205-213.
- [5]Pom erance.Popu lar va lues of Eu ler′s function[J].M athem atika,1980,27:84-89.
- [6]M asa i P,V a lette A.A low er bound for a coun terexam o le to carm ichae′ls con jecture[J].Bo ll.U n.M at.Ita l.,1982,A(6),1:313-316.
- [7]T om M A psto l.In troduction to A na lytic N um ber T heory[M].N ew Y ork:Springer-V erlag,1976.