向量交换矩阵一种新的定义及应用A new definition of vec-permutation matrix and its applications
张华民;殷红彩;
摘要(Abstract):
利用单位矩阵和基本向量给出了向量交换矩阵的一种较以往表述简单的新的定义.基于新的定义证明了向量交换矩阵的性质.给出了新定义与原有定义的等价性的证明.最后给出了矩阵克罗内克积奇异值的一个新的结论.
关键词(KeyWords): 克罗内克积;向量交换矩阵;向量化算子;奇异值
基金项目(Foundation): 国家自然科学基金(60973043);; 111引智计划(B12018);; 蚌埠学院自然科学基金(2011ZR17);; 安徽高等学校省级自然科学研究项目(KJ2013A183)
作者(Authors): 张华民;殷红彩;
参考文献(References):
- [1]Jemderson H,Pukelsheim F,Searle S.On the history of the Kronecker product[J].Linear and MultilinearAlgebra,1983,14(2):113-120.
- [2]Higham N J.Accuracy and Stability of Numerical Algorithms[M].Philadelphia:Siam,1996.
- [3]Ding F.Transformations between some special matrices[J].Computers&Mathematics with Applications,2010,59(8):2676-2695.
- [4]Ding J,Liu Y,Ding F.Iterative solutions to matrix equations of the form AiXBi=Fi[J].Computers&Mathematics with Applications,2010,59(11):3500-3507.
- [5]Shi Y,Yu B.Output feedback stabilization of networked control systems with random delays modeled byMarkov chains[J].IEEE Transactions on Automatic Control,2009,l54(7):1668-1674.
- [6]Shi Y,Fang H,Yan M.Kalman filter-based adaptive control for networked systems with unknown parametersand randomly missing outputs[J].International Journal of Robust and Nonlinear Control,2009,19(18):1976-1992.
- [7]Graham A.Kronecker Products and Matrix Calculus:With Applications[M].New York:John Wiley&SonsInc.,1982.
- [8]Bentler P,Lee S.Matrix derivatives with chain rule and rules for simple,Hadamard and Kronecker prod-ucts[J].Journal of Mathematical Psychology,1978,17(3):255-262.
- [9]Magnus J,Neudecker H.Matrix differential calculus with applications to simple,Hadamard and Kroneckerproducts[J].Journal of Mathematical Psychology,1985,29(4):474-492.
- [10]Ding F,Chen T.Iterative least-squares solutions of coupled sylvester matrix equations[J].Systems&ControlLetters,2005,54(2):95-107.
- [11]Ding F,Chen T.On iterative solutions of general coupled matrix equations[J].SIAM Journal on Controland Optimization,2006,44(6):2269-2284.
- [12]Ding F,Liu P,Ding J.Iterative solutions of the generalized sylvester matrix equations by using the hierar-chical identification principle[J].Applied Mathematics and Computation,2008,197(1):41-50.
- [13]Xie L,Liu Y,Yang H.Gradient based and least squares based iterative algorithms for matrix equationsAXB+CXD=F[J].Applied Mathematics and Computation,2010,217(5):2191-2199.
- [14]戴华.矩阵论[M].北京:科学出版社,2001.
- [15]姚国柱,段雪峰,廖安平.矩阵方程X=Q+A(In X C)1A的Hermitian正定解[J].纯粹数学与应用数学,2012(2):257-261.
- [16]Jodar L,Abou-Kandil H.Kronecker products and coupled matrix Riccati differential systems[J].LinearAlgebra and Its Applications,1989,121(2/3):39-51.
- [17]Bahuguna D,Ujlayan A,Pandey D N.Advanced type coupled matrix Riccati differential equation systemswith Kronecker product[J].Applied Mathematics and Computation,2007,194(1):46-53.
- [18]Dehghan M,Hajarian M.An iterative algorithm for solving a pair of matrix equations AY B=E,CY D=Fover generalized centro-symmetric matrices[J].Computers&Mathematics with Applications,2008,56(12):3246-3260.
- [19]Dehghan M,Hajarian M.An iterative algorithm for the reflexive solutions of the generalized coupledSylvester matrix equations and its optimal approximation[J].Applied Mathematics and Computation,2008,202(2):571-588.
- [19]Steeb W,Hardy Y.Matrix Calculus and Kronecker Product:A Practical Approach to Linear and MultilinearAlgebra[M].Singapore:World Scientific Publishing Company,2011.
- [20]Loan C.The ubiquitous kronecker product[J].Journal of Computational and Applied Mathematics,2000,123(1):85-100.
- [21]Huhtanen Marko.Real linear Kronecker product operations[J].Linear Algebra and Its Applications,2006,418(1):347-361.
- [22]Steven D,Barel M V.Rank-deficient submatrices of Kronecker products of Fourier matrices[J].LinearAlgebra and Its Applications,2007,426(2,3):349-367.
- [23]Deo S G,Murty K N,Turner J.Qualitative properties of adjoint Kronecker product boundary value prob-lems[J].Applied Mathematics and Computation,2002,133(2/3):287-295.
- [24]张贤达.矩阵分析与应用[M].北京:清华大学出版社,2004.
- [25]詹兴致.矩阵论[M].北京:高等教育出版社,2008.
- [26]邓勇,黄敬频.四元数体上一类矩阵方程解的数值方法[J].纯粹数学与应用数学,2010,26,(5):706-709.
- [27]邓勇,黄敬频,杜刚.四元数体上一类矩阵方程的极小范数最小二乘解[J].纯粹数学与应用数学,2010,26,(2):191-192,220.
- [28]黄敬频,于艳.四元数矩阵方程的复转化及保结构算法[J].纯粹数学与应用数学,2008,24,(2):321-326.
- [29]黄敬频.四元数矩阵方程AX+Y A=C的两种最佳逼近解[J].纯粹数学与应用数学,2004,20(2):109-115.
- [30]Ding F,Chen T.Gradient based iterative algorithms for solving a class of matrix equations[J].IEEETransactions on Automatic Control,2005,50(8):1216-1221.
- [31]Ding F,Chen T.Iterative least squares solutions of coupled Sylvester matrix equations[J].Systems&ControlLetters,2005,54(2):95-107.
- [32]Xie L,Ding J,Ding F.Gradient based iterative solutions for general linear matrix equations[J].Computers&Mathematics with Applications,2009,58(7):1441-1448.
- [33]Ding J,Liu Y,Ding F.Iterative solutions to matrix equations of form AiXBi=Fi[J].Computers&Mathematics with Applications,2010,59(11):3500-3507.