函数不连续的二阶拟线性奇摄动边值问题Singularly perturbed boundary value problem of second order quasi-linear equation with discontinuous function
丁海云;倪明康;
摘要(Abstract):
讨论了函数不连续情况下二阶拟线性奇摄动边值问题,用边界层函数法和轨道的光滑缝接,构造了问题的形式渐近解,并在整个区间上证明了形式渐近解的一致有效性,把吉洪诺夫系统中的函数光滑条件推广到了不连续情况。
关键词(KeyWords): 奇摄动;渐近级数;边界层函数法;微分流形
基金项目(Foundation): 国家自然科学基金(11071075);; 上海市自然科学基金(10ZR1409200);; 生物大分子国家重点实验室,上海市教育委员会E-研究院建设项目(E03004)
作者(Authors): 丁海云;倪明康;
参考文献(References):
- [1]Vasil’VA A B,Butuzov V F,Kalachev L V.The Boundary Function Method for Singular PerturbationProblems[M].Philadelphia:SIAM,1995.
- [2]Vasil’VA A B,Butuzov V F.Asymptotic Expansions of Solutions[M].Moscow:Nauka,1973.
- [3]Farrell P A,O’Riordann E,Shishkin G I.A class of singularly perturbed quasilinear diffenential equationswith interior layers[J].Mathematics of Computation,2009,48(265):103-127.
- [4]马知恩,周义仓.常微分方程定性与稳定性方法[M].北京:科学出版社,2001.
- [5]Wang Zhiming,Lin Wuzhong.The dirichlet problem for a quasilinear singularly perturbed second ordersystem[J].Journal of Mathematical Analysis and Applications,1996,201:897-910.
- [6]Esipova V A.Asymptotic properties of general boundary value problems for singularly perturbed conditionallystable systems of ordinary differential equations[J].Differential Equations,1975,11(11):1457-1465.