加权Motzkin序列的Hankel行列式The Hankel determinants of some weighted Motzkin sequences
李彦君;杨胜良;
摘要(Abstract):
基于经典的Motzkin路引入了一类新的加权Motzkin路的定义,用这种路给出了一类指数型Riordan矩阵的组合解释,得到了相应的Riordan矩阵第0列元素(加权Motzkin序列)的加法公式.作为应用,得到了一类加权Motzkin序列的Hankel行列式的计算方法.
关键词(KeyWords): 指数型Riordan矩阵;加权Motzkin路;加法公式;Hankel行列式
基金项目(Foundation): 国家自然科学基金(11561044)
作者(Authors): 李彦君;杨胜良;
参考文献(References):
- [1]Shapiro L W,Getu S,Woan W J,et al.The Riordan group[J].Discrete Applied Mathematics,1991,34(1/3):229-239.
- [2]Barry P.Constructing Exponential Riordan arrays from their A and Z sequences[J].Journal of Integer Sequences,2014,17:1-19.
- [3]Deutsch E,Ferrari L,Rinaldi S.Production matrices and Riordan array[J].Annals of Combinatorics,2009,13:65-85.
- [4]Deutsch E,Ferrari L,Rinaldi S.Production matrices[J].Adv.in Appl.Math.,2005,34:101-122.
- [5]Peart P,Woan W J.Generating functions via Hankel and Stieltjes matrices[J].Journal of Integer Sequences,2000,3(2):Article 00.2.1.
- [6]Aigner M.Motzkin numbers[J].European J.of Comb.,1998,19:663-675.
- [7]Aigner M.Catalan-like numbers and determinants[J].J.Combin.Theory Ser,1999,87(A):33-51.
- [8]Barry P.Riordan arrays,Orthogonal polynomials as moments and Hankel transforms[J].Journal of Integer Sequences,2011,14:1-37.
- [9]Sivasubramanian S.Hankel determinants of some sequences of polynomials[J].Seminaire Lotharingien de Combinatoire,2010,63:1-8.
- [10]Sloane N J A.The On-Line Encyclopedia of Integer Sequences[OL].published electronically at http://oeis.org,2014.
- [11]Aigner M.A characterization of the Bell numbers[J].Discrete Math.,1999,205:207-210.
- [12]王丽娟,杨胜良.Riordan矩阵在广义Motzkin路计数中的应用[J].纯粹数学与应用数学,2016,32(2):160-168.
扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享