关于一个含参量的Hilbert型积分不等式On a Hilbert-type integral inequality with a parameter
杨必成;
摘要(Abstract):
通过估算权函数及引入Beta函数,建立一个含参量的、具有最佳常数因子的Hilbert型积分不等式.同时建立它的两种最佳推广式及相应的等价形式.
关键词(KeyWords): Hilbert型不等式;权函数;Beta函数;Hlder不等式
基金项目(Foundation): 广东省自然科学基金(7004344);; 广东省高等学校自然科学基金重点研究项目(05Z026)
作者(Authors): 杨必成;
参考文献(References):
- [1]Hardy G H,Littlewood J E,Polya G.Inequalities [M].Cambridge: Cambridge Univ.Press,1952.
- [2]Mintrinovic D S,Pecaric J E,Fink A M.Inequalities Involving Functions and Their Integrals and Derivatives [M].Boston: Kluwer Academic Publishers,1991.
- [3]Hardy G H.Note on a theorem of Hilbert concerning series of positive terms [J].Proc.London Soc.Math., 1925,23(2):XLV-XLVI.
- [4]Yang Bicheng.On Hilbert's integral inequality [J].J.Math.Anal.Appl.,1998,220:778-785.
- [5]Yang Bicheng.A note on Hilbert's integral inequalities[J].Chin.Quart.J.Math.1998,13(4):83-86.
- [6]Xie Hongzheng,Lu ZhongXue,Xin Yumei.New majorized results on Hilbert's integral inequality [J].Chin. Quart.J.Math.,2001,16(4):67-75.
- [7]洪勇.关于Hardy-Hilber积分不等式的全方位推广[J].数学学报,2001,44(4):619-626.
- [8]杨必成.关于一个推广的Hardy-Hilber积分不等式[J].数学年刊:A辑,2002,23(2):247-254.
- [9]Yang Bicheng,Rassias T M.On the way of weight coefficient and research for the Hilbert-type inequalities [J].Mathematical Inequalities and Applications.,2003,6(4):625-658.
- [10]Yang Bicheng.On the extended Hilbert's integral inequality [J].J.Ineq.Pure.and Applied Math.,2004, 5(4):1-8.
- [11]杨必成.一个反向的Hardy-Hilbert积分不等式[J].吉林大学学报:自然科学版,2004,42(4):489-493.
- [12]王竹溪,郭敦仁.特殊函数论[M].北京:科学出版社,1979.
- [13]匡继昌.常用不等式[M].济南:山东科技出版社,2003.