含积分边界条件的分数阶微分方程边值问题的正解的存在性The existence of positive solutions for boundary value problems of fractional diferential equations with integral boundary conditions
张立新;王海菊;
摘要(Abstract):
研究了含积分边界条件的分数阶微分方程的边值问题,首先给出格林函数及性质,其次将问题转化为一个等价的积分方程,最后应用Krasnoselkii及Leggett-Williams不动点定理得到了一个及多个正解的存在性,推广了以往的结果.
关键词(KeyWords): 积分边界条件;分数阶微分方程;不动点定理;正解
基金项目(Foundation): 北京市自然科学基金(1122016);; 北京市教委科技计划面上项目(KM201311417006);; 北京联合大学中自然科学类新起点计划项目(zk201203)
作者(Authors): 张立新;王海菊;
参考文献(References):
- [1]Killbas A A,Srivastava H M,Trujillo J J.Theory and Application of Fractional Diferential Equation[M].Amsterdam:Elsevier B V,2006.
- [2]Bai Zhanbing,LHaisheng.Positive solutions for boundary value problem of nonlinear fractional diferential equation[J].J.Math.Anal.Appl.,2005,311:495-505.
- [3]Bai Zhanbing.On positive solutions of a nonlocal fractional boundary value problem[J].Nonlinear Anal.,2010,72:916-924.
- [4]Wang Yongqing,Liu Lishan,Wu Yonghong.Positive solutions for a class of fractional boundary value problem with changing sign nonlinearity[J].Nonlinear Anal.,2011,74:6434-6441.
- [5]Liang Sihua,Zhang Jihui.Positive solutions for boundary value problems of nonlinear fractional diferential equation[J].Nonlinear Anal.,2009,71:5545-5550.
- [6]Zhao Yige,Sun Shurong,Han Zhenlai,et al.The existence of multiple positive solutions for boundary value problems of nonlinear fractional diferential equations[J].Commun.Nonlinear Sci.Numer.Simulat.,2011,16:2086-2097.
- [7]许晓婕,孙新国,吕炜.非线性分数阶微分方程边值问题正解的存在性[J].数学物理学报:A辑,2011,31(2):401-409.
- [8]芦芳,周宗福.一类分数阶微分方程三点边值问题正解的存在性[J].纯粹数学与应用数学,2011,27(5):672-678.
- [9]Cabada Alberto,Wang Guotao.Positive solutions of nonlinear fractional diferential equations with integral boundary conditions[J].J.Math.Anal.Appl.,2012,389:403-411.
- [10]金京福,刘锡平,窦丽霞,等.分数阶微分方程积分边值问题正解的存在性[J].吉林大学学报:理学版,2011,49(5):823-828.
- [11]Krasnoselskii M A.Positive Solutions of Operator Equations[M].Groningen:Noordhof,1964.
- [12]Leggett R W,Williams L R.Multiple positive fxed points of nonlinear operators on ordered Banach spaces[J].Indiana Univ.Math.J.,1979,28:673-688.