基于冗余紧框架的?_2/?_1极小化块稀疏压缩感知Block-sparse compressed densing with redundant tight frames via ?_2/?_1-minimization
张枫;王建军;
摘要(Abstract):
压缩感知是(近似)稀疏信号处理的研究热点之一,它突破了Nyquist/Shannon采样率,实现了信号的高效采集和鲁棒重构.本文采用?_2/?_1极小化方法和Block D-RIP理论研究了在冗余紧框架下的块稀疏信号,所获结果表明,当Block D-RIP常数δ_(2k|τ)满足0 <δ_(2k|τ)<0.2时,?_2/?_1极小化方法能够鲁棒重构原始信号,同时改进了已有的重构条件和误差上界.基于离散傅里叶变换(DFT)字典,执行了一系列仿真实验充分证实了理论结果.
关键词(KeyWords): 压缩感知;?_2/?_1极小化方法;Block D-RIP;冗余紧框架;块稀疏信号
基金项目(Foundation): 国家自然科学基金(61673015,61273020);; 西南大学实验技术研究项目(SYJ2019031);; 中央高校基本业务费专项(XDJK2018C076,SWU1809002)
作者(Authors): 张枫;王建军;
参考文献(References):
- [1] Nyquist H. Certain topics in telegraph transmission theory[J]. American Institute of Electrical Engineers, 1928,47(2):617-644.
- [2] Cande`s E, Romberg J, Tao T. Robust uncertainty principles:exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006,52(2):489-509.
- [3] Donoho D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 1928,52(4):1289-1306.
- [4] Baraniuk R G. Single-pixel imaging via compressive sampling[J]. IEEE Siganl Processing Magazine,2008,25(2):83-91.
- [5] Lustig M, Donoho D, Pauly J M. Sparse MRI:the application of compressed sensing for rapid MR imaging[J]. Magnetic Resonance in Medicine, 2007,58(6):1182-1195.
- [6] Wright J, Yang A Y, Ganesh A, et al. Robust face recognition via sparse representation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227.
- [7] Majumdar A, Ward R. Compressed sensing of color images[J]. Signal Processing, 2010,90(12):3122-3127.
- [8] Tan Z, Eldar Y C, Beck A, et al. Smoothing and decomposition for analysis sparse recovery[J].IEEE Transactions on Signal Processing, 2014,62(7):1762-1774.
- [9] Shen Y, Han B, Braverman E. Stable recovery of analysis based approaches[J]. Applied and Computational Harmonic Analysis, 2015,39(1):161-172.
- [10] Cand`es E J, Eldar Y C, Needell D, et al. Compressed sensing with coherent and redundant dictionaries[J]. Applied and Computational Harmonic Analysis, 2011,31(1):59-73.
- [11] Mo Q, Li S. New bounds on the restricted isometry constantδ2k[J]. Applied and Computational Harmonic Analysis, 2011,31(3):460-468.
- [12] Parvaresh F, Vikalo H, Misra H, et al. Recovering sparse signals using sparse measurement matrices in compressed DNA microarrays[J]. IEEE Journal of Selected Topics in Signal Processing,2008,2(3):275-285.
- [13] Wang Y, Wang J J, Xu Z B. A note on block-sparse signals recovery with coherent tight frames[J].Discrete Dynamics in Nature and Society, 2013,2013(1):1-8.
- [14] Eldar Y C, Mishali M. Robust recovery of signals from a structured union of subspaces[J]. IEEE Transactions on Information Theory, 2009,55(11):5302-5316.
- [15] Lin J H, Li S. Block sparse recovery via mixed?2/?1-minimization[J]. Acta Mathematica Sinica,2013,29(7):1401-1412.
- [16]王文东,王尧,王建军.基于迭代重赋权最小二乘算法的块稀疏压缩感知[J].电子学报, 2015,45(5):923-928.
- [17] Wang J, Zhang J, Wang W, et al. A perturbation analysis of nonconvex block-sparse compressed sensing[J]. Communications in Nonlinear Science and Numerical Simulation, 2015,29(1-3):416-426.
- [18] Liu C, Wang J, Wang W, et al. Non-convex block-sparse compressed sensing with redundant dictionaries[J]. IET Signal Processing, 2017,11(2):171-180.