动力系统的Poisson结构和可积变形Poisson structures and integrable deformations of dynamical systems
张亚欣;黄晴;
摘要(Abstract):
利用动力系统的守恒积分构造Poisson结构,将动力系统表示为广义Hamilton系统的形式,并以一个三维动力系统为例,通过添加任意可微函数推广守恒积分,构造系统的可积变形,并给出变形后系统的Poisson结构,由此得到了新的刘维尔可积系统.
关键词(KeyWords): 动力系统;Poisson结构;广义Hamilton系统;守恒积分;可积变形
基金项目(Foundation): 国家自然科学基金(11871396)
作者(Authors): 张亚欣;黄晴;
参考文献(References):
- [1] Arnold V I. Mathematical Methods of Classical Mechanics[M]. New York:Springer-Verlag, 1978.
- [2] Perelomov A M. Integrable Systems of Classical Mechanics and Lie Algebras[M]. New York:Springer-Verlag, 1990.
- [3] Evans N W. Superintegrability in classical mechanics[J]. Phys. Rev. A, 1990,41(10):5666-5676.
- [4]闫梦姣,黄晴.一类弯曲空间超可积哈密顿系统的研究[J].纯粹数学与应用数学, 2019,35(3):269-275.
- [5]李继彬,赵晓华,刘正容.广义哈密顿系统理论及其应用[M].北京:科学出版社, 2007.
- [6]郭仲衡,陈玉明.具有不依赖于时间的不变量的三维常微分方程组的Hamilton结构[J].应用数学和力学, 1995,16(4):283-288.
- [7] Zhao X, Huang K. Generalized Hamiltonian systems and the qualitatively study of high dimensional differential equations[J]. Acta Mathematicae Applicatae Sinica, 1994,17(2):182-191.
- [8] Hern′andez-Bermejo B. New solutions of the Jacobi equations for three-dimensional Poisson structures[J]. J. Math. Phys., 2001,42(10):4984-4996.
- [9] Hern′andez-Bermejo B. Characterization and global analysis of a family of Poisson structures[J].Phys. Lett. A, 2006,355(2):98-103.
- [10] G¨urses M, Guseinov G S, Zheltukhin K. Dynamical systems and poisson structures[J]. J. Math.Phys., 2009,50(11):703-709.
- [11] Ballesteros A, Blasco A, Musso F. Integrable deformations of Lotka-Volterra systems[J]. Phys.Lett. A, 2011,375(38):3370-3374.
- [12] Evripidou C A, Kassotakis P, Vanhaecke P. Integrable deformations of the Bogoyavlenskij-Itoh Lotka-Volterra systems[J]. Regul. Chaotic Dyn., 2017,22(5):721-739.
- [13] Galajinsky A. Remark on integrable deformations of the Euler top[J]. J. Math. Anal. Appl.,2014,416(2):995-997.
- [14] Ballesteros A, Blasco A, Musso F. Integrable deformations of R¨ossler and Lorenz systems from Poisson-Lie groups[J]. J. Differ. Equ., 2016,260(11):8207-8228.
- [15] Cristian Lˇazureanu. On the integrable deformations of the maximally superintegrable systems[J].Symmetry, 2021,13(6):1-6.