一类几何流方程周期解的爆破Blowup of periodic solutions for nonlinear equations of geometric flow
汪瑶瑶;
摘要(Abstract):
研究双曲平均曲率流中一类几何流方程周期解的爆破问题.引入合适的黎曼不变量,将该方程化为对角型的一阶拟线性双曲型方程组.该方程组在Lax意义下不是真正非线性的.假设初值是周期的,且在一个周期内全变差很小,此外假设初值还满足一定的结构条件,可以证得该几何流方程的周期解必在有限时间内发生爆破,解的生命跨度估计可以给出.
关键词(KeyWords): 几何流方程;拟线性双曲型方程组;周期解;爆破;生命跨度
基金项目(Foundation): 国家自然科学基金(11301006);; 安徽省自然科学基金(1408085MA01)
作者(Authors): 汪瑶瑶;
参考文献(References):
- [1]He C L,Kong D X,Liu K F.Hyperbolic mean curvature flow[J].Differential Equations,2009,246:373-390.
- [2]Huisken G,Ilmanen T.The inverse mean curvature flow and the Riemannian Penrose inequality[J].Differential Geom.,2001,59:353-437.
- [3]Lefloch P G,Smoczyk K.The hyperbolic mean curvature flow[J].Math.Pures.Appl.,2008,90:591-614.
- [4]Kong D X,Wang Z G.Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow[J].Differential Equations,2009,247:1694-1719.
- [5]Chou K S,Wo W F.On hyperbolic Gauss curvature flows[J].Differential Geometry,2011,89:455-485.
- [6]Kong D X,Liu K F,Wang Z G.Hyperbolic mean curvature flow:Evolution of plane curves[J].Acta Math.Sci.,2009,29:493-514.
- [7]Cesan Lamberto.Existence in the large of periodic solutions of hyperbolic partial differential equations[J].Archive for Rational Mechanics and Analysis,1965,20:170-190.
- [8]Cheng K S.Formation of singularities for nonlinear hyperbolic partial differential equation[J].Contemp.Math.,1983,17:45-56.
- [9]Glimm J,Lax P D.Decay of solutions of systems of nonlinear hyperbolic conservation laws[J].Mem.Am.Math.Soc.,1970,101:1-112.
- [10]Klainerman S,Majda A.Formation of singularities for wave equations including the nonlinear vibrating string[J],Comm.Pure Appl.Math.,1980,33:241-263.
- [11]Kong D X,Wang Z G.Formation of singularities in the motion of plane curves under hyperbolic mean curvature flow[J].Differential Equations,2009,247:1694-1719.
- [12]Li T T.Global Classical Solutions for Quasilinear Hyperbolic Systems[M].Paris:Wiley-Masson,1994.
- [13]Li T T,Kong D X.Blow up of periodic solutions to quasilinear hyperbolic systems[J].Nonlinear Anal.,1996,26:1779-1789.
- [14]Lax P D.Hyperbolic systems of conservation laws II[J].Comm.Pure Appl.Math.,1957,10:537-556.
- [15]Qu P,Xin Z P.Long time existence of entropy solutions to the one-dimensional non-isentropic Euler equations with periodic initial data[J].Arch.Rational Mech.Anal.,2015,216:221-259.
- [16]Wang Z G.Hyperbolic mean curvature flow in Minkowski space[J].Nonlinear Analysis,2014,94:259-271.
- [17]Wang Z G.Blow-up of periodic solutions to reducible quasilinear hyperbolic systems[J].Nonlinear Analysis,2010,73:704-712.
- [18]Xiao J J.Some topics on hyperbolic conservation laws[D].Hong Kong:The Chinese University of Hong Kong,2008.