带有对数非线性源的p-Kirchhoff方程解的整体存在性和衰减估计Global existence and decay estimation of solutions of p-Kirchhoff equation with logarithmic nonlinear source
杨雨;杨晗;
摘要(Abstract):
考虑带有对数非线性源的p-Kirchhoff方程的初边值问题,此问题可用来描述热传播的过程和种群密度的演化.首先利用Galerkin方法,对数Sobolev不等式以及Gronwall不等式,再结合Lions引理,得到其局部解的存在性.同时引入修正泛函研究势井深度,结合势井理论,建立先验估计,得到解的整体存在性和衰减估计,推广和改进了已有结果.
关键词(KeyWords): p-Kirchhoff方程;对数非线性源;势井;整体解;能量衰减
基金项目(Foundation): 国家自然科学基金(11701477,11971394)
作者(Authors): 杨雨;杨晗;
参考文献(References):
- [1] Ghisi M, Gobbino M. Hyperbolic-parabolic singular perturbation for middly degenerate Kirchhoff equations:time-decay estimates[J]. Journal of Differential Equations, 2008,245(10):2979-3007.
- [2] Lions J L. On some questions in boundary value problems of mathematical physics[J]. Contemporary Developments in Continuum Mechanics and Partial Differential Equations, 1978,30(1):284-346.
- [3] Ma T F, Rivera J E M. Positive solutions for a nonlinear nonlocal elliptic transmission problem[J].Applied Mathematics Letters, 2003,16(2):243-248.
- [4] Alves C O, Corre?a F J S A, Ma T F. Positive solutions for a quasilinear elliptic equation of Kirchhoff type[J]. Computers and Mathematics with Applications, 2005,49(1):85-93.
- [5] Perera K, Zhang Z T. Nontrivial solutions of Kirchhoff-type problems via the Yang index[J].Journal of Differential Equations, 2006,221(1):246-255.
- [6] Chen C Y, Kuo Y C, Wu T F. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions[J]. Journal of Differential Equations, 2011,250(4):1876-1908.
- [7] Corre?a F J S A, Figueiredo G M. On a p-Kirchhoff equation via Krasnoselskii′s genus[J]. Applied Mathematics Letters, 2009,22(6):819-822.
- [8] Liu D C. On a p-Kirchhoff equation via fountain theorem and dual fountain theorem[J]. Nonlinear Analysis, 2010,72(1):302-308.
- [9] Hamydy A, Massar M, Tsouli N. Existence of solutions for p-Kirchhoff type problems with critical exponent[J]. Electronic Journal of Differential Equations, 2011,2011(105):1-8.
- [10] Chipot M, Valente V, Caffarelli G V. Remarks on a nonlocal problems involving the Dirichlet energy[J]. Rendiconti del Seminario Matematico della Universit`a di Padova, 2003,110(4):199-220.
- [11] Zheng S M, Chipot M. Asymptotic behavior of solutions to nonlinear parabolic equations with nonlocal terms[J]. Asymptotic Analysis, 2005,45(3):301-312.
- [12] Chipot M, Savitska T. Nonlocal p-Laplace equations depending on the Lpnorm of the gradient[J].Advances in Differenrial Equations, 2014,19(11):997-1020.
- [13] Han Y Z, Li Q W. Threshold results for the existence of global and blow-up solutions to Kirchhoff equations with arbitrary initial energy[J]. Computers and Mathematics with Applications,2018,75(9):3283-3297.
- [14] Li H X. Blow-up of solutions to a p-Kirchhoff-type parabolic equation with general nonlinearity[J].Journal of Dynamical and Control Systems, 2020,26(3):383-392.
- [15] Chen H, Luo P, Liu G W. Global solution and blow-up of a semilinear heat equation with logarithmic nonlinearity[J]. Journal of Mathematical Analysis and Applications, 2015,422(1):84-98.
- [16] Chen H, Tian S Y. Initial boundary value problem for a class of semilinear pseudo-parabolic equations with logarithmic nonlinearity[J]. Journal of Differential Equations, 2015,258(12):4424-4442.
- [17] Le C N, Le X T. Global solution and blow-up for a class of p-Laplacian evolution equations with logarithmic nonlinearity[J]. Acta Applicandae Mathematicae, 2017,151(1):149-169.
- [18] Han Y Z, Cao C L, Sun P. A p-Laplace equation with logarithmic nonlinearity at high initial energy level[J]. Acta Applicandae Mathematicae, 2019,164(1):155-164.
- [19] Del Pino M, Dolbeault J. Nonlinear diffusions and optimal constants in Sobolev type inequalities:asymptotic behaviour of equations involving the p-Laplacian[J]. Comptes Rendus de l′Acad′emie des Sciences-Series I-Mathematics, 2002,334(5):365-370.
- [20] Martinez P. A new method to obtain decay rate estimates for dissipative systems[J]. ESAIM.Control, Optimisation and Calculus of Variations, 1999,4(1):419-444.
- [21] Lions J L. Quelques M′ethodes de R′esolution des Probl`emes aux Limites non Line′aires[M]. Dunod:Guthier-Villars, 1969.