一类局部非二次Hamilton系统的次调和解的存在性Subharmonic solutions for a class of local nonquadratic Hamiltonian systems
江芹;马晟;
摘要(Abstract):
运用极小极大方法得到一类局部非二次的Hamilton系统的次调和解的存在性定理.
关键词(KeyWords): 鞍点定理;次调和解;(C)条件;Hamilton系统
基金项目(Foundation): 湖北教育厅重点科研资助项目(B20072700)
作者(Authors): 江芹;马晟;
参考文献(References):
- [1]Elves A B Silva.Subharmonic solutions for subquadratic Hamiltonian systems [J].J.Differential Equations, 1995,115(1):120-145.
- [2]Liu ChunGen.Subharmonic solutions of Hamiltonian systems [J].Nonlinear Anal.,Ser.A,Theory Methods, 2000,42(2):185-198.
- [3]Ekeland I,Hofer H.Subharmonics for convex nonautonomous Hamiltonian systems [J].Comm.Pure.Appl. Math.,1987,40(1):1-36.
- [4]Serra Enrico,Tarallo Massimo,Terracini Susanna.Subharmonic solutions to second-order differential equa- tions with periodic nonlinearities [J].Nonlinear Anal,2000,41(5/6):649-667.
- [5]Michalek Ray,Tarantello Gabriella. Subharmonic solutions with prescribed minimal period for nonau- tonomous Hamiltonian systems [J].J.Differential Equations,1988,72(1):28-55.
- [6] Rabinowitz P.On subharmonic solutions of Hamiltonian systems [J].Comm.Pure.Appl.Math.,1980, 33(5):609-633.
- [7]Willem M.Subharmonic oscillations of convex Hamiltonian systems [J].Nonlinear Anal.,1985,9(11):1303- 1311.
- [8]Marcelo F Furtado,Elves A B Silva.Double resonant problems which are locally nonquadratic at infinity [J].Electron J.Diff.Eqns.,2001,6:155-171.
- [9]Giannoni Fabio. Periodic solutions of dynamical systems by a saddle point theorem of Rabinowitz [J]. Nonlinear Anal.,1989,13(6):707-719.
- [10]Tang ChunLei,Wu XingPing.Periodic solutions for second order systems with not uniformly coercive po- tential [J].J.Math.Anal.Appl.,2001,259(2):386-397.