有限群的ss-置换子群On ss-permutable subgroups of finite groups
卢家宽;郭秀云;
摘要(Abstract):
设G为有限群,称G的子群H为ss-置换子群,如果存在G的次正规子群B使得G=HB,且H与B的任意Sylow子群可以交换,即对任意X∈Syl(B)有XH=HX.利用子群的ss-置换性来研究有限群的结构,得到有限群超可解的两个充分条件.
关键词(KeyWords): ss-置换子群;s-置换子群;超可解群
基金项目(Foundation): 国家自然科学基金(10771132),SGRC(G2310);; 上海市教委重点学科建设项目(J50101)
作者(Authors): 卢家宽;郭秀云;
参考文献(References):
- [1]Kegel O.Sylow-Gruppen and Subnormalteiler endlicher Gruppen[J].Math.Z.,1962,78:205-221.
- [2]Schmid P.Subgroups permute with all Sylow subgroups[J].J.Algebra,1998,207(1):285-293.
- [3]Shaalan A.The inuence ofπ-quasinormality of some subgroups on the structure of a finite group[J].Acta Math.Hungar.,1990,56:287-293.
- [4]Assad M,Ramadan M,Shaalan A.Inuence ofπ-quasinormality on maximal subgroups of Sylow subgroups of Fitting subgroups of a finite group[J].Arch.Math.,1991,56:521-527.
- [5]Li Y,Wang Y.The inuence of minimal subgroups on the structure of a finite group[J].Proc.Amer.Math.Soc.,2002,131:337-341.
- [6]Li Y,Wang Y.The inuence ofπ-quasinormality of some subgroups on the structure of a finite group[J].Arch.Math.,2003,81:245-252.
- [7]Doerk K,Hawkes T.Finite Soluble Groups[M].Berlin:Walter de Gruyter,1992.
- [8]Wielandt H.Subnormal Subgroups and Permutation Groups[M].Columbus:Ohio State University,1971.
- [9]Huppert B.Endliche Gruppen I[M].Berlin:Springer-Verlag,1967.
- [10]Shemetkov L A.Formations of Finite Groups[M].Moscow:Nauka,1978.
- [11]Skiba A N.On weakly s-permutable subgroups of finite groups[J].J.Algebra,2007,315:192-209.
- [12]Huppert B.Blackburn N.Finite Groups III[M].Berlin:Springer-Verlag,1982.
- [13]Wei H,Wang Y,Li Y.On c-normal maximal and minimal subgroups of Sylow subgroups of finite groups[J].Comm.Algebra,1998,31:4807-4816.
- [14]Sergienko V I.A criterion for the p-solubility of finite groups[J].Math.Notes,1971,9:216-220.
- [15]Guo W,Shum K P,Skiba A.G-covering subgroup systems for the classes of supersoluble and nilpotent groups[J].Israel J.Math.,2003,138(1):125-138.
- [16]Li D,Guo X.The inuence of c-normality of subgroups on the structure of finite groups II[J].J.Pure Appl.Algebra,2000,151:53-60.