一类分数阶奇异微分方程积分边值问题正解的存在性The existence of positive solutions for a class of fractional singular differential equations with integral boundary conditions
王晓,刘锡平,邓雪静
摘要(Abstract):
研究一类具有Riemann-Liouville导数的分数阶奇异微分方程积分边值问题的可解性.运用Guo-Krasnoselskii不动点定理,得到了奇异微分方程积分边值问题正解的存在性定理.最后,给出了一个实例,用于说明所得结论的有效性.
关键词(KeyWords): 分数阶奇异微分方程;积分边值问题;正解;不动点定理
基金项目(Foundation): 国家自然科学基金(11171220);; 沪江基金(B14005)
作者(Author): 王晓,刘锡平,邓雪静
参考文献(References):
- [1]Kilbas A A,Srivastava H M,Trujillo J J.Theory and Applications of Fractional Differential Equations[M].Amsterdam:Elsevier B.V,2006.
- [2]白占兵.分数阶微分方程边值问题理论及应用[M].北京:陕科学技术出版社,2012.
- [3]张立新,王海菊.含积分边界条件的分数阶微分方程边值问题的正解的存在性[J].纯粹数学与应用数学,2013,29(5):450-457.
- [4]Liu Xinping,Wu Guiyun.Existence of positive solutions for integral boundary value problem of fractional differential equations[J].Journal of Shanghai Normal University:Natural Sciences:Mathematics,2014,43(5):496-505.
- [5]刘帅,贾梅,秦小娜.带积分边值条件的分数阶微分方程解的存在性和唯一性[J].上海理工大学学报,2014,36(5):409-415.
- [6]金京福,刘锡平,窦丽霞,等.分数阶积分微分方程边值问题正解的存在性[J].上海理工大学学报,2011,49(5):824-828.
- [7]Bai Zhanbing,Sun Weichen.Existence and multiplicity of positive solutions for singular fractional boundary value problems[J].Computers and Mathematics with Applications,2012,63(9):1369-1381.
- [8]Xu Xiaojie,Jiang Daqing,Yuan Chengjun.Multiple positive solutions for the boundary value problem of a nonlinear fractional differential equation[J].Nonlinear Analysis TMA,2009,71(10):4676-4688.
- [9]Agarwal R P,O′Regan D,Stanek S.Positive solutions for Dirichlet problems of singular nonlinear fractional differential equations[J].J.Math.Anal.Appl.,2010,371(1):57-68.
- [10]郭大钧,孙经先,刘兆理.非线性常微分方程泛函方法[M].济南:山东科学技术出版社,2006.