一类条件不等式的控制证明与应用Majorized proof and applications for a class of conditional inequality
石焕南;张静;
摘要(Abstract):
通过判断相关函数的Schur凸性、Schur几何凸性和Schur调和凸性,证明并推广了一类条件不等式,并据此建立了某些单形不等式.
关键词(KeyWords): Schur凸性;Schur调和凸性;Schur几何凸性;条件不等式;单形
基金项目(Foundation): 北京市属高等学校人才强教计划资助项目(PHR201108407)
作者(Authors): 石焕南;张静;
参考文献(References):
- [1]Marshall A W,Olkin I,Arnold B C.Inequalities:Theory of Majorization and Its Application[M].2nd ed.New York:Springer Press,2011.
- [2]王伯英.控制不等式基础[M].北京:北京师范大学出版社,1990.
- [3]张小明.几何凸函数[M].合肥:安徽大学出版社,2004.
- [4]Chu Yuming,LYupei.The Schur harmonic convexity of the Hamy symmetric function and its applications[J].Journal of Inequalities and Applications,2009,13:29-38.
- [5]石焕南.受控理论与解析不等式[M].哈尔滨:哈尔滨工业大学出版社,2012.
- [6]Chu Yuming,Sun Tianchuan.The Schur harmonic convexity for a class of symmetric functions[J].Acta Mathematica Scientia,2010,30B(5):1501-1506.
- [7]Chu Y M,Wang G D,Zhang X H.The Schur multiplicative and harmonic convexities of the complete symmetric function[J].Mathematische Nachrichten,2011,284(5/6):653-663.
- [8]Guan Kaizhong,Guan Ruke.Some properties of a generalized Hamy symmetric function and its applications[J].Journal of Mathematical Analysis and Applications,2011,376(2):494-505.
- [9]Shi Huannan.Two Schur-convex functions related to Hadamard-type integral inequalities[J].Publicationes Mathematicae Debrecen,2011,78(2):393-403.
- [10]uljak V.Schur-convexity of the weightedˇCebiˇsev functional[J].Journal of Mathematical Inequalities,2011,5(2):213-217.
- [11]Xia Weifeng,Chu Yuming.The Schur convexity of Gini mean values in the sense of harmonic mean[J].Acta Mathematica Scientia,2011,31B(3):1103-1112.
- [12]Yang Zhenhang.Schur harmonic convexity of Gini means[J].International Mathematical Forum,2011,6(16):747-762.
- [13]Chu Yuming,Xia Weifeng.Necessary and sufcient conditions for the Schur harmonic convexity of the Generalized Muirhead Mean[J].Proceedings of A.Razmadze Mathematical Institute,2010,152:19-27.
- [14]Wu Ying,Qi Feng.Schur-harmonic convexity for diferences of some means[J].Analysis,2012,32(4):263-270.
- [15]Chu Yuming,Xia Weifeng,Zhang Xiaohui.The Schur concavity,Schur multiplicative and harmonic convexities of the second dual form of the Hamy symmetric function with applications[J].Journal of Multivariate Analysis,2012,105(1):412-421.
- [16]Xia Weifeng,Chu Yuming,Wang Gendi.Necessary and sufcient conditions for the Schur harmonic convexity or concavity of the extended mean values[J].Revista De La Uni`on Matema′tica Argentina,2010,51(2):121-132.
- [17]夏卫锋,褚玉明.一类对称函数的Schur凸性与应用[J].数学进展,2012,41(4):436-446.
- [18]邵志华.一类对称函数的Schur-几何凸性Schur-调和凸性[J].数学的实践与认识,2012,42(16):199-206.
- [19]匡继昌.常用不等式[M].4版.济南:山东科学技术出版社,2010.
- [20]杨学枝.数学奥林匹克不等式研究[M].哈尔滨:哈尔滨工业大学出版社,2009.
- [21]Mitrinovi D S,Peri J E,Volenec V.Recent Advances in Geometric Inequalities[M].Dordrecht:Kluwer Academic Publishers,1989.
- [22]石焕南.一个有理分式不等式的加细[J].纯粹数学与应用数学,2006,22(2):256-262.
- [23]张晗方.几何不等式导引[M].北京:中国科学文化出版社,2003.