关于Marcinkiewicz积分高阶交换子在弱Hardy空间中的有界性On boundedness of the high order commutators of Marcinkiewicz integrals on weak Hardy spaces of atom type
张松艳;周根娇;陶祥兴;
摘要(Abstract):
设μ_Ω是带非光滑核Ω的Marcinkiewicz积分算子,m是正整数,μ_(Ω,b)m是算子μ_Ω与BMO函数b产生的m阶交换子.利用原子分解和Littlewood-Paley技术,该文建立了高阶交换子μ_(Ω,b)m是算子μ_Ω与BMO函数b产生的m阶交换子.利用原子分解和Littlewood-Paley技术,该文建立了高阶交换子μ_(Ω,b)m在一类原子型弱Hardy空间W H_(b,m)m在一类原子型弱Hardy空间W H_(b,m)p(0
关键词(KeyWords): Marcinkiewicz积分;高阶交换子;原子型弱Hardy空间
基金项目(Foundation): 国家自然科学基金(10771110,10471069);; 宁波市自然科学基金(2009A610084)
作者(Authors): 张松艳;周根娇;陶祥兴;
参考文献(References):
- [1]Stein E M.On the Functions of Littlewood-Paley,Lusin and Marcinkiewicz[J].Trans.Amer.Math.Soc., 1958,88:430-466.
- [2]Xu Han,Chen Jiecheng,Ying Yiming.A Note on Marcinkiewicz integrals with H~1 Kernel[J].Acta.Math. Scientia,Ser.B,2003,23:135-138.
- [3]Tao Xiangxing,Wei Ruiying,Zhang Songyan.H~p bounds for some Littlewood-Paley operators with rough variable kernels[J].African Diaspora Journal of Mathematics,2009,8(1):16-27.
- [4]Coifman R,Rochberg R.,Weiss G.Factorization theorems for Hardy spaces in several variables[J].Ann.of Math.,1976,103:611-635.
- [5]Perez C.Endpoint estimates for commutators of singular integral operators[J].J.Funct.Anal.,1995,128:163- 185.
- [6]Ding Yong,Lu Shanzhen,Yabuta K.On Commutators of Marcinkiewicz Integrals with rough kernel[J].J. Math.Anal.Appl.,2002,275:60-68.
- [7]Paluszynski M.Characterization of Lipschitz spaces via Commutator of Coifman,Rochberg and Weiss:A multiplier theorem for the semigroup of contractions[D].Washington:Washington University,1992.
- [8]薛庆营.Marcinkiewicz积分的交换子在弱Hardy空间中的有界性[J].北京师范大学学报:自然科学版, 2002,38(2):165-173.
- [9]肖丹,束立生.Littlewood-Paley算子交换子在加权Herz型Hardy空间上的有界性[J].纯粹数学与应用数学, 2008,24(3):610-616.
- [10]葛杰,陶祥兴.参数型Marcinkiewicz积分在弱Hardy空间上的有界性[J].宁波大学学报:理工版,2009,22(1):89- 93.