一类四阶偏微分方程的对称分析及级数解The symmetry and series solutions of a class of fourth-order partial differential equation
杨春艳;李小青;
摘要(Abstract):
研究了一类四阶偏微分方程的李对称,构造了方程所容许的李对称的优化系统,进行了对称约化,得到了精确解.进一步,基于幂级数理论,得到了这类四阶偏微分方程的幂级数解.
关键词(KeyWords): 四阶偏微分方程;李对称;优化系统;幂级数法;精确解
基金项目(Foundation): 国家自然科学基金(11201371);; 陕西省自然科学基金(2012JQ1013);; 陕西省教育厅专项科研基金(11JK0482)
作者(Authors): 杨春艳;李小青;
参考文献(References):
- [1]Yao Q L.Existence,multiplicity and infinite solvability of positive solutions to a nonlinear fourth-order periodic boundary value problem[J].Nonlinear Analysis,2005,63:237-246.
- [2]邴厚乐,刘松洁,吕学琴.应用RKM与ADM求解一类四阶非线性微分方程[J].哈尔滨师范大学学报:自然科学版,2014,30(6):37-42.
- [3]Wang Q,Chen Y,ZHANG H Q.A new Riccati equation rational expansion method and its application to(2+1)-dimensional Burgers equation[J].Chaos Solitons Fractals,2005,25:1019-1028.
- [4]Wang M L,Zhou Y B,LI Z B.Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics[J].Phys.Lett.A,1996,216:67-75.
- [5]Olver P J.Application of Lie group to differential equation[M].New York:Springer,1993.
- [6]Ibragimov N H.Lie Group Analysis of Differential Equations–Symmetries,Exact Solutions and Conservation Laws[M].Florida:CRC,1994.
- [7]Bluman G W,Kumei S.Symmetries and Differential Equations[M].New York:Springer,1989.
- [8]Gao B,Tian H X.Symmetry reductions and exact solutions to the ill-posed Boussinesq equation[J].International Journal of Non-Linear Mechanics,2015,72:80-83.
- [9]Tu J M,Tian S F,Xu M J,et al.On Lie symmetries,optimal systems and explicit solutions to the Kudryashov-Sinelshchikov equation[J].Applied Mathematics and Computation,2016,275:345-356.
- [10]李晓东,常晶.一类广义Kuramoto-Sivashinsky方程的Lie对称分析[J].黑龙江大学自然科学学报,2015,32(3):297-301.
- [11]Ibragimov N H.Transformation Groups Applied to Mathematical Physics[M].Dordrecht:Reidel,1985.
- [12]Ovsiannikov L V.Group Analysis of Differential Equations[M].New York:Academic,1982.
- [13]Asmar N H.Partial Differential Equations with Fourier Series and Boundary Value Problems[M].2nd ed Beijing:China Machine Press,2005.
- [14]刘汉泽.基于李对称分析的偏微分方程的精确解的研究[D].云南:昆明理工大学数学系,2009.